Sharp inequalities for maximum of skew Brownian motion

Yaroslav A. Lyulko
Lomonosov Moscow State University, Moscow, Russia

Let $W^{\alpha}=\left(W_{t}^{\alpha}\right)_{t \geq 0}$ be a skew Brownian motion with parameter $\alpha \in[0,1]$ which can be defined as a unique strong solution $X=\left(X_{t}\right)_{t \geq 0}$ of stochastic equation

$$
X_{t}=X_{0}+B_{t}+(2 \alpha-1) L_{t}^{0}(X),
$$

where $L_{t}^{0}(X)$ is the local time at zero of X_{t}. In the present work we obtain maximal inequalities for skew Brownian motion. These inequalities generalize well-known results concerning standard Brownian motion $B=\left(B_{t}\right)_{t \geq 0}$ (case $\alpha=1 / 2$) and its modulus $|B|=\left(\left|B_{t}\right|\right)_{t \geq 0}($ case $\alpha=1)$. Namely, the authors of [1], [2] established that for any Markov time $\tau \in \mathfrak{M}$

$$
\mathrm{E}\left(\max _{0 \leq t \leq \tau} B_{t}\right) \leq \sqrt{\mathrm{E} \tau}, \quad \mathrm{E}\left(\max _{0 \leq t \leq \tau}\left|B_{t}\right|\right) \leq \sqrt{2 \mathrm{E} \tau}
$$

where \mathfrak{M} is the set of all Markov times τ (with respect to the natural filtration of B) with $\mathrm{E} \tau<\infty$. The main result of our work is contained in the following theorem (see [3]).

Theorem 1. For any Markov time $\tau \in \mathfrak{M}$ and for any $\alpha \in(0,1)$ we have

$$
\begin{equation*}
\mathrm{E}\left(\max _{0 \leq t \leq \tau} W_{t}^{\alpha}\right) \leq M_{\alpha} \sqrt{\mathrm{E} \tau} \tag{1}
\end{equation*}
$$

where $M_{\alpha}=\alpha\left(1+A_{\alpha}\right) /(1-\alpha)$ and A_{α} is the unique solution of the equation

$$
A_{\alpha} e^{A_{\alpha}+1}=\frac{1-2 \alpha}{\alpha^{2}}
$$

such that $A_{\alpha}>-1$. Inequality (1) is "sharp," i.e. for each $T \geq 0$ there exists a stopping time τ such that $\mathrm{E} \tau=T$ and

$$
\mathrm{E}\left(\max _{0 \leq t \leq \tau} W_{t}^{\alpha}\right)=M_{\alpha} \sqrt{\mathrm{E} \tau}
$$

[^0]

Fig. 1. The quantity M_{α}

Acknowledgements. The author is grateful to A.N. Shiryaev for posing the problem and attention to the work.

References

[1] L. Dubins, G. Schwarz (1988). A sharp inequality for sub-martingales and stopping times. Asterisque 157-158: 129-145.
[2] L. Dubins, L. Shepp, A. Shiryaev (1988). Optimal stopping rules and maximal inequalities for Bessel processes. Theory Probab. Appl. 38-2: 226-261.
[3] Ya. Lyulko (2012). Sharp inequalities for maximum of skew Brownian motion. To be published in Moscow University Mathematics Bulletin vol 4.
[4] M. V. Zhitlukhin (2009). A maximal inequality for skew Brownian motion. Statist. Decisions 27: 261-280.

[^0]: Author's email: yaroslav.lyulko@gmail.com

