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1. Suppose we sequentially observe a stochastic process X = (Xt)t≥0 having the
structure

dXt = µI(t ≥ θ)dt+ dBt,

where B = (Bt)t≥0 is a standard Brownian motion, θ > 0 and µ are unobservable
random variables with known distributions, independent mutually and of B. The
random variable θ is the moment when the drift of Xt changes its value from zero
to µ, i.e. “disorder” happens.

In this paper we consider the case when random variables θ and µ have the
following structure: θ takes value 0 with probability p (q = 1 − p below) and it is
exponentially distributed with parameter λ > 0 given that θ > 0; µ takes values
µ1 < 0 and µ2 > 0 with corresponding probabilities ρ1 and ρ2 = 1 − ρ1. Being
based upon the continuous observation of X our task is to detect the moment of
disorder θ and define the value of µ (to test µ for hypotheses H1 : µ = µ1 and
H2 : µ = µ2) with minimal loss.

For this, we consider a sequential decision rule δ = (τ, d), where τ is a stopping
time of the observed process X (with respect to the natural filtration (FXt )t≥0), and
d is an FXτ -measurable random variable taking values d1 and d2. After stopping
the observation at time τ the terminal decision d indicates which hypothesis on the
drift value should be accepted: if d = d1 we accept H1 and if d = d2 we accept H2.

With each decision rule δ = (τ, d) we associate the Bayesian risk

R(δ) = Rθ(δ) + Rµ(δ),

where
Rθ(δ) = P(τ < θ) + cE[τ − θ]+

is a combination of the probability of a “false alarm” and the average delay in
detecting the “disorder” correctly, c > 0 is a given constant, and

Rµ(δ) = aP(d = d1, µ = µ2) + bP(d = d2, µ = µ1)

is the average loss due to a wrong terminal decision, where a > 0 and b > 0 are
given constants.

The problem then consists of finding the decision rule δ∗ = (τ∗, d∗) such that

R(δ∗) = inf
δ
R(δ), (1)

where the infimum is taken over all decision rules δ.
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Thus, the problem under consideration combines the classical problems of de-
tecting the “disorder” and sequential hypothesis testing (for details see e.g. [1],
Chapter VI).

2. Introduce the a posteriori probability processes πi = (πit)t≥0, i = 1, 2 with

πit = P(θ ≤ t, µ = µi | FXt ), i = 1, 2.

The method of solution of (1) is natural in such kind of problems and consists in
reduction to an optimal stopping problem.

Theorem 1. The 2-dimensional process π = (π1, π2) is a Markov sufficient statis-
tic in problem (1). Moreover, the process π solves the following system of stochastic
differential equations:

dπit = λρi(1− π1
t − π2

t )dt+ πit

[µi
σ
−
(µ1

σ
π1
t +

µ2

σ
π2
t

)]
dBt, i = 1, 2,

where B = (Bt)t≥0 is a Brownian motion (generally, different from Bt). The opti-
mal stopping time τ∗ can be found as the solution of the optimal stopping problem

V (π) = inf
τ
Eπ

[
1− π1

τ − π2
τ + c

∫ τ

0
(π1
t + π2

t ) dt

+ a(ρ1π
2
τ + ρ2(1− π1

τ )) ∧ b(ρ2π
1
τ + ρ1(1− π2

τ ))

]
, (2)

where Eπ denotes the mathematical expectation with respect to the measure Pπ,
under which πt starts Pπ-a.s. from the point π. Terminal decision function is
defined as d∗ = d1 if a(ρ1π

2
τ + ρ2(1 − π1

τ )) < b(ρ2π
1
τ + ρ1(1 − π2

τ )) and d∗ = d2

otherwise.

In the talk we discuss analytical properties of the optimal stopping rules in the
problem (2) and show how to compute optimal stopping boundary numerically.
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