Symmetric integrals and stochastic analysis

Farit S. Nasyrov

Ufa State Aviation Technical University, Ufa, Russia

1. In this paper following [1] we consider a symmetric integral $\int_0^t f(s, X(s)) * dX(s)$ with respect to an arbitrary continuous function X(s). If X(s) is a path of Brownian motion, then the symmetric integral coincides with the Stratonovich integral.

Let $0 = t_0^{(n)} < t_1^{(n)} < ... < t_{N_n}^{(n)} = t$ be a sequence of partitions such that $\lim_{n\to\infty} \max_k (t_k^{(n)} - t_{k-1}^{(n)}) \to 0$. The limit $\lim_{n\to\infty} \int_0^t f(s, X^{(n)}(s))(X^{(n)})'(s)ds$ is called a symmetric integral and is denoted by $\int_0^t f(s, X(s)) * dX(s)$. Here $X^{(n)}(s)$ denotes a broken line.

Suppose that for almost all u:

(a) $f(s, u), s \in [0, t]$, is a right-continuous bounded variation function;

(b) the total variation |f|(t, u) of the function $f(s, u), s \in [0, t]$, is an integrable function;

(c) $\int_0^t \mathbf{1}(s:X(s)=u)|f|(ds,u)=0;$

then there exists a symmetric integral $\int_0^t f(s, X(s)) * dX(s)$.

The symmetric integral $\int_0^t f(s, X(s)) * dX(s)$ has the following properties: (i) Let assumptions (a) – (c) hold, then

$$\int_0^t f(s, X(s)) * dX(s) = \int_{X(0)}^{X(t)} f(t, u) du - \int_R \int_0^t \kappa(u, X(0), X(s)) f(ds, u) du,$$

here $\kappa(u, a, b) = sign(b - a)\mathbf{1}(a \land b < v < a \lor b).$

(ii) Suppose that F(t, u) has continuous partial derivatives F'_t , F'_u ; then

$$F(t, X(t)) - F(0, X(0)) = \int_0^t F_u(s, X(s)) * dX(s) + \int_0^t F_s(s, X(s)) ds$$

2. A scalar first-order pathwise differential equation in differential form is written as the following equation

$$d\xi_s = \sigma(s, X(s), \xi_s) * dX(s) + b(s, X(s), \xi_s) ds, \quad \xi_0 = \xi(0), \quad s \in [0, t_0].$$
(1)

Here the first term in the right-hand corresponds to a symmetric integral, and the second term corresponds to a Riemann integral. The function $\xi(s) = \phi(s, X(s))$ is called a solution if the following conditions hold:

(i) the function $\phi(s, v)$ has continuous partial derivatives $\varphi'_v(s, v), \varphi''_{sv}(s, v)$;

(ii) the function $\xi(s) = \phi(s, X(s))$ satisfies (1).

Author's email: farsagit@yandex.ru

From now on we make the assumption: the continuous function X(s) is almost nowhere differentiable. The existence of solution of pathwise equation can be guaranteed by the following theorem.

Theorem 1 Suppose that the functions $\sigma(s, v, \phi)$, $\sigma'_s(s, v, \phi)$, $\sigma'_{\phi}(s, v, \phi)$, $b(s, v, \phi)$ jointly continuous; then the following conditions are equivalent:

(i) there exist a solution $\xi(s) = \phi(s, X(s));$

(ii) the function $\xi(s) = \phi(s, u), \, \varphi(0, X(0)) = \xi(0)$, for almost all s satisfies the condition

$$\phi'_v(s, X(s)) = \sigma(s, X(s), \phi(s, X(s))); \ \phi'_s(s, X(s)) = b(s, X(s), \phi(s, X(s))).$$

Theorem 2 Let all assumptions of Theorem 1 hold. Suppose that the function $b'_{\phi}(s, v, \phi)$ is jointly continuous; then there exists a unique solution of equation (1).

Remark 1 Let $\sigma(s, v, \phi) \neq 0$. Using Theorem 1, we obtain the following equations chain

$$\phi_v'(s,v)=\sigma(s,v,\phi); \quad \phi_s'(s,X(s))=b(s,X(s),\phi(s,X(s))).$$

To find a solution of (1), we need to find a solution of this chain of equations.

For example, suppose that $\xi_t - \xi_0 = \int_0^t [a\xi_s + b] * dX(s) + \int_0^t [h\xi_s + g] ds$ is a linear pathwise equation with respect to the symmetric integral. From Remark 1 it follows that $\phi'_u(t, u) = a\phi(t, u) + b$, $\phi'_t(t, u)|_{u=X(t)} = h\phi(t, X(t)) + g$, $\phi(0, X(0)) = \xi_0$. Hence $\phi(t, u) = \frac{1}{a} \left(e^{u+C(t)} - b \right)$, where C(s) is an arbitrary function. In order to find a function C(s), it is necessary to solve the equation $\frac{1}{a} e^{X(t)+C(t)}C'(t) = \frac{h}{a} \left(e^{X(t)+C(t)} - b \right) + g$ with initial condition $\frac{1}{a} \left(e^{X(0)+C(0)} - b \right) = \xi_0$.

3. The results of section 2 can be extended to more complex equations.

(i) Consider the equation $\eta(t) - \eta(0) = \sum_{k=1}^{d} \int_{0}^{t} a_{k}(s, \eta(s)) * dW_{k}(s) + \int_{0}^{t} b(s, \eta(s)) ds$,

 $t \in [0,T]$, where $(W_1(s), ..., W_d(s))$ is a multi-dimensional Brownian motion. The solution of this equation must be sought in the form of $\eta(s) = \phi(s, W_1(s), ..., W_d(s))$. To find $\eta(s)$, it is necessary to solve the equations chain

$$\phi_{u_k}'(s, W_1(s), ..., W_{k-1}(s), u_k, W_{k+1}(s), ..., W_d(s)) =$$

$$= a_k(s, \phi(s, W_1(s), ..., W_{k-1}(s), u_k, W_{k+1}(s), ..., W_d(s)), \ k = 1, ..., d_k$$

$$\phi_s'(s, W_1(s), ..., W_d(s)) = b(s, \phi_s'(s, W_1(s), ..., W_d(s))).$$

(ii) Similarly, for the evolutional differential equation

$$u(t,x) - u(0,x) = \int_0^t F_1\left(s, x, X(s), u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial^k u}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}, \dots\right) ds + \frac{\partial^k u}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} ds + \frac{\partial^k u}{$$

$$+\int_0^t F_2\left(s, x, X(s), u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial^k u}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}, \dots\right) * dX(s), \quad (s, x) \in \mathbb{R}^+ \times \mathbb{R}^n,$$

 $k_1 + \ldots + k_n = k \leq m$, the solution is sought in the form of u(s, x) = u(s, x, X(s)). To find the solution of this equation, it is necessary to solve the equations chain

$$\frac{\partial}{\partial v}u(s,x,v) = F_2\left(s,x,v,u,\frac{\partial u}{\partial x_1},...,\frac{\partial^k u}{\partial x_1^{k_1}...\partial x_n^{k_n}},...\right)\Big|_{u=u(s,x,v)},$$
$$\frac{\partial}{\partial s}u(s,x,v)|_{v=X(s)} = F_1\left(s,x,X(s),u,\frac{\partial u}{\partial x_1},...,\frac{\partial^k u}{\partial x_1^{k_1}...\partial x_n^{k_n}},...\right)\Big|_{u=u(s,x,X(s))}.$$

Note that this method can be applied to solve the problem of nonlinear filtering of diffusion processes.

4. The linearization problem (see [1] for more details) of the stochastic ordinary differential equations is to find a change of variables such that a transformed equation becomes a linear equation.

Theorem 3 Suppose that the coefficients σ and b of the equation (1) are continuous and $\sigma \neq 0$. Then (1) is reducible to the linear differential equation $d\eta_t = A(t)\eta_t * dX(t) + B(t)\eta_t dt.$

References

- [1] Grigoriev Y.N., Ibragimov N.H., Kovalev V/F., Meleshko S. V. (2010). Symmetries of integro-differential equations. Dordrecht, Springer
- [2] Nasyrov F.S. (2011). Local times, symmetric integrals and stochastic analysis. Moscow: FIZMATLIT, (in Russian).