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Symmetric integrals and stochastic analysis
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Ufa State Aviation Technical University, Ufa, Russia

1. In this paper following [1] we consider a symmetric integral
∫ t

0 f(s,X(s))∗dX(s)
with respect to an arbitrary continuous function X(s). If X(s) is a path of Brow-
nian motion, then the symmetric integral coincides with the Stratonovich integral.

Let 0 = t
(n)
0 < t

(n)
1 < ... < t

(n)
Nn

= t be a sequence of partitions such that

limn→∞maxk(t
(n)
k −t

(n)
k−1)→ 0. The limit lim

n→∞
∫ t

0 f(s,X(n)(s))(X(n))′(s)ds is called

a symmetric integral and is denoted by
∫ t

0 f(s,X(s))∗dX(s). Here X(n)(s) denotes
a broken line.

Suppose that for almost all u:

(a) f(s, u), s ∈ [0, t], is a right-continuous bounded variation function;

(b) the total variation |f |(t, u) of the function f(s, u), s ∈ [0, t], is an integrable
function;

(c)
∫ t

0 1(s : X(s) = u)|f |(ds, u) = 0;

then there exists a symmetric integral
∫ t

0 f(s,X(s)) ∗ dX(s).

The symmetric integral
∫ t

0 f(s,X(s)) ∗ dX(s) has the following properties:

(i) Let assumptions (a) – (c) hold, then

∫ t

0
f(s,X(s)) ∗ dX(s) =

∫ X(t)

X(0)
f(t, u)du−

∫

R

∫ t

0
κ(u,X(0), X(s))f(ds, u)du,

here κ(u, a, b) = sign(b− a)1(a ∧ b < v < a ∨ b).
(ii) Suppose that F (t, u) has continuous partial derivatives F ′t , F

′
u; then

F (t,X(t))− F (0, X(0)) =

∫ t

0
Fu(s,X(s)) ∗ dX(s) +

∫ t

0
Fs(s,X(s))ds.

2. A scalar first-order pathwise differential equation in differential form is written
as the following equation

dξs = σ(s,X(s), ξs) ∗ dX(s) + b(s,X(s), ξs)ds, ξ0 = ξ(0), s ∈ [0, t0]. (1)

Here the first term in the right-hand corresponds to a symmetric integral, and the
second term corresponds to a Riemann integral. The function ξ(s) = φ(s,X(s)) is
called a solution if the following conditions hold:

(i) the function φ(s, v) has continuous partial derivatives ϕ′v(s, v), ϕ′′sv(s, v);

(ii) the function ξ(s) = φ(s,X(s)) satisfies (1).
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From now on we make the assumption: the continuous function X(s) is al-
most nowhere differentiable. The existence of solution of pathwise equation can be
guaranteed by the following theorem.

Theorem 1 Suppose that the functions σ(s, v, φ), σ′s(s, v, φ), σ′φ(s, v, φ), b(s, v, φ)
jointly continuous; then the following conditions are equivalent:

(i) there exist a solution ξ(s) = φ(s,X(s));

(ii) the function ξ(s) = φ(s, u), ϕ(0, X(0)) = ξ(0), for almost all s satisfies the
condition
φ′v(s,X(s)) = σ(s,X(s), φ(s,X(s))); φ′s(s,X(s)) = b(s,X(s), φ(s,X(s))).

Theorem 2 Let all assumptions of Theorem 1 hold. Suppose that the function
b′φ(s, v, φ) is jointly continuous; then there exists a unique solution of equation (1).

Remark 1 Let σ(s, v, φ) 6= 0. Using Theorem 1, we obtain the following equations
chain

φ′v(s, v) = σ(s, v, φ); φ′s(s,X(s)) = b(s,X(s), φ(s,X(s))).

To find a solution of (1), we need to find a solution of this chain of equations.

For example, suppose that ξt−ξ0 =
∫ t

0 [aξs+b]∗dX(s)+
∫ t

0 [hξs+g]ds is a linear
pathwise equation with respect to the symmetric integral. From Remark 1 it follows
that φ′u(t, u) = aφ(t, u) + b, φ′t(t, u)|u=X(t) = hφ(t,X(t)) + g, φ(0, X(0)) = ξ0.

Hence φ(t, u) = 1
a

(
eu+C(t) − b

)
, where C(s) is an arbitrary function. In order

to find a function C(s), it is necessary to solve the equation 1
ae
X(t)+C(t)C ′(t) =

h
a

(
eX(t)+C(t) − b

)
+ g with initial condition 1

a

(
eX(0)+C(0)) − b

)
= ξ0.

3. The results of section 2 can be extended to more complex equations.

(i) Consider the equation η(t)−η(0)=
d∑

k=1

t∫
0

ak(s, η(s))∗dWk(s) +
t∫

0

b(s, η(s))ds,

t ∈ [0, T ], where (W1(s), ...,Wd(s)) is a multi-dimensional Brownian motion. The
solution of this equation must be sought in the form of η(s) = φ(s,W1(s), ...,
Wd(s)). To find η(s), it is necessary to solve the equations chain

φ′uk(s,W1(s), ...,Wk−1(s), uk,Wk+1(s), ...,Wd(s)) =

= ak(s, φ(s,W1(s), ...,Wk−1(s), uk,Wk+1(s), ...,Wd(s)), k = 1, ..., d,

φ′s(s,W1(s), ...,Wd(s)) = b(s, φ′s(s,W1(s), ...,Wd(s))).

(ii) Similarly, for the evolutional differential equation

u(t, x)− u(0, x) =

∫ t

0
F1

(
s, x,X(s), u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)
ds+

+

∫ t

0
F2

(
s, x,X(s), u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)
∗ dX(s), (s, x) ∈ R+ ×Rn,
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k1 + ...+ kn = k ≤ m, the solution is sought in the form of u(s, x) = u(s, x,X(s)).
To find the solution of this equation, it is necessary to solve the equations chain

∂

∂v
u(s, x, v) = F2

(
s, x, v, u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)∣∣∣
u=u(s,x,v)

,

∂

∂s
u(s, x, v)|v=X(s) = F1

(
s, x,X(s), u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)∣∣∣
u=u(s,x,X(s))

.

Note that this method can be applied to solve the problem of nonlinear filtering of
diffusion processes.

4. The linearization problem (see [1] for more details) of the stochastic ordinary
differential equations is to find a change of variables such that a transformed equa-
tion becomes a linear equation.

Theorem 3 Suppose that the coefficients σ and b of the equation (1) are con-
tinuous and σ 6= 0. Then (1) is reducible to the linear differential equation
dηt = A(t)ηt ∗ dX(t) +B(t)ηtdt.
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