Symmetric integrals and stochastic analysis

Farit S. Nasyrov
Ufa State Aviation Technical University, Ufa, Russia

1. In this paper following [1] we consider a symmetric integral $\int_{0}^{t} f(s, X(s)) * d X(s)$ with respect to an arbitrary continuous function $X(s)$. If $X(s)$ is a path of Brownian motion, then the symmetric integral coincides with the Stratonovich integral.

Let $0=t_{0}^{(n)}<t_{1}^{(n)}<\ldots<t_{N_{n}}^{(n)}=t$ be a sequence of partitions such that $\lim _{n \rightarrow \infty} \max _{k}\left(t_{k}^{(n)}-t_{k-1}^{(n)}\right) \rightarrow 0$. The limit $\lim _{n \rightarrow \infty} \int_{0}^{t} f\left(s, X^{(n)}(s)\right)\left(X^{(n)}\right)^{\prime}(s) d s$ is called a symmetric integral and is denoted by $\int_{0}^{t} f(s, X(s)) * d X(s)$. Here $X^{(n)}(s)$ denotes a broken line.
Suppose that for almost all u :
(a) $f(s, u), s \in[0, t]$, is a right-continuous bounded variation function;
(b) the total variation $|f|(t, u)$ of the function $f(s, u), s \in[0, t]$, is an integrable function;
(c) $\int_{0}^{t} \mathbf{1}(s: X(s)=u)|f|(d s, u)=0 ;$
then there exists a symmetric integral $\int_{0}^{t} f(s, X(s)) * d X(s)$.
The symmetric integral $\int_{0}^{t} f(s, X(s)) * d X(s)$ has the following properties:
(i) Let assumptions (a) - (c) hold, then

$$
\int_{0}^{t} f(s, X(s)) * d X(s)=\int_{X(0)}^{X(t)} f(t, u) d u-\int_{R} \int_{0}^{t} \kappa(u, X(0), X(s)) f(d s, u) d u
$$

here $\kappa(u, a, b)=\operatorname{sign}(b-a) \mathbf{1}(a \wedge b<v<a \vee b)$.
(ii) Suppose that $F(t, u)$ has continuous partial derivatives $F_{t}^{\prime}, F_{u}^{\prime}$; then

$$
F(t, X(t))-F(0, X(0))=\int_{0}^{t} F_{u}(s, X(s)) * d X(s)+\int_{0}^{t} F_{s}(s, X(s)) d s
$$

2. A scalar first-order pathwise differential equation in differential form is written as the following equation

$$
\begin{equation*}
d \xi_{s}=\sigma\left(s, X(s), \xi_{s}\right) * d X(s)+b\left(s, X(s), \xi_{s}\right) d s, \quad \xi_{0}=\xi(0), \quad s \in\left[0, t_{0}\right] \tag{1}
\end{equation*}
$$

Here the first term in the right-hand corresponds to a symmetric integral, and the second term corresponds to a Riemann integral. The function $\xi(s)=\phi(s, X(s))$ is called a solution if the following conditions hold:
(i) the function $\phi(s, v)$ has continuous partial derivatives $\varphi_{v}^{\prime}(s, v), \varphi_{s v}^{\prime \prime}(s, v)$;
(ii) the function $\xi(s)=\phi(s, X(s))$ satisfies (1).

[^0]From now on we make the assumption: the continuous function $X(s)$ is almost nowhere differentiable. The existence of solution of pathwise equation can be guaranteed by the following theorem.

Theorem 1 Suppose that the functions $\sigma(s, v, \phi), \sigma_{s}^{\prime}(s, v, \phi), \sigma_{\phi}^{\prime}(s, v, \phi), b(s, v, \phi)$ jointly continuous; then the following conditions are equivalent:
(i) there exist a solution $\xi(s)=\phi(s, X(s))$;
(ii) the function $\xi(s)=\phi(s, u), \varphi(0, X(0))=\xi(0)$, for almost all s satisfies the condition
$\phi_{v}^{\prime}(s, X(s))=\sigma(s, X(s), \phi(s, X(s))) ; \phi_{s}^{\prime}(s, X(s))=b(s, X(s), \phi(s, X(s)))$.
Theorem 2 Let all assumptions of Theorem 1 hold. Suppose that the function $b_{\phi}^{\prime}(s, v, \phi)$ is jointly continuous; then there exists a unique solution of equation (1).

Remark 1 Let $\sigma(s, v, \phi) \neq 0$. Using Theorem 1, we obtain the following equations chain

$$
\phi_{v}^{\prime}(s, v)=\sigma(s, v, \phi) ; \quad \phi_{s}^{\prime}(s, X(s))=b(s, X(s), \phi(s, X(s)))
$$

To find a solution of (1), we need to find a solution of this chain of equations.
For example, suppose that $\xi_{t}-\xi_{0}=\int_{0}^{t}\left[a \xi_{s}+b\right] * d X(s)+\int_{0}^{t}\left[h \xi_{s}+g\right] d s$ is a linear pathwise equation with respect to the symmetric integral. From Remark 1 it follows that $\phi_{u}^{\prime}(t, u)=a \phi(t, u)+b,\left.\phi_{t}^{\prime}(t, u)\right|_{u=X(t)}=h \phi(t, X(t))+g, \phi(0, X(0))=\xi_{0}$. Hence $\phi(t, u)=\frac{1}{a}\left(e^{u+C(t)}-b\right)$, where $C(s)$ is an arbitrary function. In order to find a function $C(s)$, it is necessary to solve the equation $\frac{1}{a} e^{X(t)+C(t)} C^{\prime}(t)=$ $\frac{h}{a}\left(e^{X(t)+C(t)}-b\right)+g$ with initial condition $\frac{1}{a}\left(e^{X(0)+C(0))}-b\right)=\xi_{0}$.
3. The results of section 2 can be extended to more complex equations.
(i) Consider the equation $\eta(t)-\eta(0)=\sum_{k=1}^{d} \int_{0}^{t} a_{k}(s, \eta(s)) * d W_{k}(s)+\int_{0}^{t} b(s, \eta(s)) d s$, $t \in[0, T]$, where $\left(W_{1}(s), \ldots, W_{d}(s)\right)$ is a multi-dimensional Brownian motion. The solution of this equation must be sought in the form of $\eta(s)=\phi\left(s, W_{1}(s), \ldots\right.$, $\left.W_{d}(s)\right)$. To find $\eta(s)$, it is necessary to solve the equations chain

$$
\begin{gathered}
\phi_{u_{k}}^{\prime}\left(s, W_{1}(s), \ldots, W_{k-1}(s), u_{k}, W_{k+1}(s), \ldots, W_{d}(s)\right)= \\
=a_{k}\left(s, \phi\left(s, W_{1}(s), \ldots, W_{k-1}(s), u_{k}, W_{k+1}(s), \ldots, W_{d}(s)\right), k=1, \ldots, d,\right. \\
\phi_{s}^{\prime}\left(s, W_{1}(s), \ldots, W_{d}(s)\right)=b\left(s, \phi_{s}^{\prime}\left(s, W_{1}(s), \ldots, W_{d}(s)\right)\right)
\end{gathered}
$$

(ii) Similarly, for the evolutional differential equation

$$
\begin{gathered}
u(t, x)-u(0, x)=\int_{0}^{t} F_{1}\left(s, x, X(s), u, \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial^{k} u}{\partial x_{1}^{k_{1}} \ldots \partial x_{n}^{k_{n}}}, \ldots\right) d s+ \\
+\int_{0}^{t} F_{2}\left(s, x, X(s), u, \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial^{k} u}{\partial x_{1}^{k_{1}} \ldots \partial x_{n}^{k_{n}}}, \ldots\right) * d X(s), \quad(s, x) \in R^{+} \times R^{n},
\end{gathered}
$$

$k_{1}+\ldots+k_{n}=k \leq m$, the solution is sought in the form of $u(s, x)=u(s, x, X(s))$. To find the solution of this equation, it is necessary to solve the equations chain

$$
\begin{aligned}
\frac{\partial}{\partial v} u(s, x, v) & =\left.F_{2}\left(s, x, v, u, \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial^{k} u}{\partial x_{1}^{k_{1}} \ldots \partial x_{n}^{k_{n}}}, \ldots\right)\right|_{u=u(s, x, v)} \\
\left.\frac{\partial}{\partial s} u(s, x, v)\right|_{v=X(s)} & =\left.F_{1}\left(s, x, X(s), u, \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial^{k} u}{\partial x_{1}^{k_{1}} \ldots \partial x_{n}^{k_{n}}}, \ldots\right)\right|_{u=u(s, x, X(s))} .
\end{aligned}
$$

Note that this method can be applied to solve the problem of nonlinear filtering of diffusion processes.
4. The linearization problem (see [1] for more details) of the stochastic ordinary differential equations is to find a change of variables such that a transformed equation becomes a linear equation.

Theorem 3 Suppose that the coefficients σ and b of the equation (1) are continuous and $\sigma \neq 0$. Then (1) is reducible to the linear differential equation $d \eta_{t}=A(t) \eta_{t} * d X(t)+B(t) \eta_{t} d t$.

References

[1] Grigoriev Y. N., Ibragimov N. H., Kovalev V/ F., Meleshko S. V. (2010). Symmetries of integro-differential equations. - Dordrecht, Springer
[2] Nasyrov F.S. (2011). Local times, symmetric integrals and stochastic analysis. Moscow: FIZMATLIT, (in Russian).

[^0]: Author's email: farsagit@yandex.ru

