Multilevel primal and dual approaches for pricing American options

Denis Belomestny ${ }^{1} \quad$ Marcel Ladkau ${ }^{2} \quad$ John Schoenmakers ${ }^{2}$
${ }^{1}$ Duisburg-Essen University, Duisburg, Germany
${ }^{2}$ Weierstrass Institute, Berlin, Germany

1. Let $\left(Z_{j}\right)_{j \geq 0}$ be a nonnegative adapted process on a filtered probability space $\left(\Omega, \mathbb{F}=\left(\mathcal{F}_{j}\right)_{j \geq 0}, \mathbb{P}\right)$ representing the discounted payoff of an American option, so that the holder of the option receives Z_{j} if the option is exercised at time $j \in\{0, \ldots, T\}$ with $T \in \mathbb{N}_{+}$. The pricing of American options can be formulated as a primal-dual problem. The primal representation corresponds to the following optimal stopping problems

$$
Y_{j}^{*}:=\max _{\tau \in \mathcal{T}[j, \ldots, T]} \mathbb{E}_{\mathcal{F}_{j}}\left[Z_{\tau}\right], \quad j=0, \ldots, T
$$

where $\mathcal{T}[j, \ldots, T]$ is the set of \mathbb{F}-stopping times taking values in $\{j, \ldots, T\}$. The process $\left(Y_{j}^{*}\right)_{j \geq 0}$ is called the Snell envelope. Y^{*} is a supermartingale satisfying the Bellman principle

$$
Y_{j}^{*}=\max \left(Z_{j}, \mathbb{E}_{\mathcal{F}_{j}}\left[Y_{j+1}^{*}\right]\right), \quad 0 \leq j<T, \quad Y_{T}^{*}=Z_{T}
$$

An exercise policy is a family of stopping times $\left(\tau_{j}\right)_{j=0, \ldots, T}$ such that $\tau_{j} \in \mathcal{T}[j, \ldots, T]$.
During the nineties the primal approach was the only method available. Some years later a quite different "dual" approach has been discovered by [8] and [5]. The next theorem summarizes their results.

Theorem 1. Let \mathcal{M} denote the space of adapted martingales, then we have the following dual representation for the value process Y_{j}^{*}

$$
\begin{aligned}
Y_{j}^{*} & =\inf _{\pi \in \mathcal{M}} \mathbb{E}_{\mathcal{F}_{j}}\left[\max _{s \in\{j, \ldots, T\}}\left(Z_{s}-\pi_{s}+\pi_{j}\right)\right] \\
& =\max _{s \in\{j, \ldots, T\}}\left(Z_{s}-\pi_{s}^{*}+\pi_{j}^{*}\right) \quad \text { a.s. }
\end{aligned}
$$

where

$$
\begin{equation*}
Y_{j}^{*}=Y_{0}^{*}+\pi_{j}^{*}-A_{j}^{*} \tag{1}
\end{equation*}
$$

is the (unique) Doob decomposition of the supermartingale Y_{j}^{*}. That is, π^{*} is a martingale and A^{*} is an increasing process with $\pi_{0}=A_{0}=0$ such that (1) holds.
2. Assume that we are given a stopping family $\left(\tau_{j}\right)$ that is consistent, i.e.

$$
\tau_{j}>j \Rightarrow \tau_{j}=\tau_{j+1}, \quad j=0, \ldots, T-1
$$

[^0]The stopping policy defines a lower bound for Y^{*} via

$$
Y_{j}=\mathbb{E}_{\mathcal{F}_{j}}\left[Z_{\tau_{j}}\right], \quad j=0, \ldots, T .
$$

Consider now a new family $\left(\widehat{\tau}_{j}\right)_{j=0, \ldots, T}$ defined by

$$
\begin{equation*}
\widehat{\tau}_{j}:=\inf \left\{k: j \leq k<T, Z_{k} \geq \mathbb{E}_{\mathcal{F}_{k}}\left[Z_{\tau_{k+1}}\right]\right\} \wedge T . \tag{2}
\end{equation*}
$$

The basic idea behind (2) goes back to [6] in fact. For more general versions of policy iteration and their analysis, see [7]. Next, we introduce the $\left(\mathcal{F}_{j}\right)$-martingale

$$
\begin{equation*}
\pi_{j}=\sum_{k=1}^{j}\left(\mathbb{E}_{\mathcal{F}_{k}}\left[Z_{\tau_{k}}\right]-\mathbb{E}_{\mathcal{F}_{k-1}}\left[Z_{\tau_{k}}\right]\right), \quad j=0, \ldots, T \tag{3}
\end{equation*}
$$

and then consider,

$$
\widetilde{Y}_{j}:=\mathbb{E}_{\mathcal{F}_{j}}\left[\max _{k=j, \ldots, T}\left(Z_{k}-\pi_{k}+\pi_{j}\right)\right]
$$

along with

$$
\widehat{Y}_{j}:=\mathbb{E}_{\mathcal{F}_{j}}\left[Z_{\widehat{\tau}_{j}}\right], \quad j=0, \ldots, T
$$

The following theorem states that \widehat{Y} is an improvement of Y and that the Snell envelope process Y_{j}^{*} lies between \widehat{Y}_{j} and \widetilde{Y}_{j} with probability 1 .

Theorem 2. It holds

$$
Y_{j} \leq \widehat{Y}_{j} \leq Y_{j}^{*} \leq \widetilde{Y}_{j}, \quad j=0, \ldots, T \quad \text { a.s. }
$$

3. The main issue in the Monte Carlo construction of \widehat{Y} and \widetilde{Y} in a Markovian environment is the estimation of the conditional expectations in (2) and (3). We thus assume that the cash-flow Z_{j} is of the form $Z_{j}=Z_{j}\left(X_{j}\right)$ for some underlying (possibly high-dimensional) Markovian process X. A canonical approach is the use of sub simulations. In this respect we consider an enlarged probability space $\left(\Omega, \mathbb{F}^{\prime}, \mathbb{P}\right)$, where $\mathbb{F}^{\prime}=\left(\mathcal{F}_{j}^{\prime}\right)_{j=0, \ldots, T}$ and $\mathcal{F}_{j} \subset \mathcal{F}_{j}^{\prime}$ for each j. On the enlarged space we consider \mathcal{F}_{j}^{\prime} measurable estimations $\mathcal{C}_{j, M}$ of $C_{j}=\mathbb{E}_{\mathcal{F}_{j}}\left[Z_{\tau_{j+1}}\right]$ as being standard Monte Carlo estimates based on M sub simulations. More precisely

$$
\mathcal{C}_{j, M}=\frac{1}{M} \sum_{m=1}^{M} Z_{\tau_{j+1}^{(m)}}\left(X_{\substack{j, X_{j}(m)}}^{j, X_{j}}\right)
$$

where the $\tau_{j+1}^{(m)}$ are evaluated on M sub trajectories all starting at time j in X_{j}. Obviously, $\mathcal{C}_{j, M}$ is an unbiased estimator for C_{j} with respect to $\mathbb{E}_{\mathcal{F}_{j}}[\cdot]$. We thus end up with a simulation based versions of (2) and (3) respectively,

$$
\widehat{\tau}_{j, M}:=\inf \left\{k: j \leq k<T, Z_{k}>\mathcal{C}_{k, M}\right\} \wedge T, \quad j=0, \ldots, T
$$

$$
\pi_{j, M}:=\sum_{k=1}^{j}\left(Z_{k}-\mathcal{C}_{k-1, M}\right) 1_{\left\{\tau_{k}=k\right\}}+\sum_{k=1}^{j}\left(\mathcal{C}_{k, M}-\mathcal{C}_{k-1, M}\right) 1_{\left\{\tau_{k}>k\right\}} .
$$

Denote

$$
\widehat{Y}_{j, M}:=\mathbb{E}_{\mathcal{F}_{j}}\left[Z_{\widehat{\tau}_{j, M}}\right], \quad j=0, \ldots, T
$$

and

$$
\widetilde{Y}_{j, M}:=\mathbb{E}_{\mathcal{F}_{j}}\left[\max _{k=j, \ldots, T}\left(Z_{k}-\pi_{k, M}+\pi_{j, M}\right)\right] .
$$

Theorem 3. Let us assume that there exist constants $B_{0, j}>0, j=0, \ldots, T-1$, and $\alpha>0$, such that for any $\delta>0$ and $j=0, \ldots, T-1$,

$$
\mathbb{P}\left(\left|\mathbb{E}_{\mathcal{F}_{j}}\left[Z_{\widehat{\tau}_{j+1}}\right]-Z_{j}\right| \leq \delta\right) \leq B_{0, j} \delta^{\alpha}
$$

Further suppose that there are constants B_{1} and B_{2}, such that $\left|Z_{j}\right|<B_{1}$ and

$$
\begin{equation*}
\operatorname{Var}_{\mathcal{F}_{j}}\left[Z_{\tau_{j+1}}\right]:=\mathbb{E}_{\mathcal{F}_{j}}\left[\left(Z_{\tau_{j+1}}-C_{j}\right)^{2}\right]<B_{2}, \quad \text { a.s. } \tag{4}
\end{equation*}
$$

for $j=0, \ldots, T-1$. It then holds,

$$
\left|\widehat{Y}_{0}-\widehat{Y}_{0, M}\right| \leq M^{-\frac{1+\alpha}{2}} B \sum_{k=0}^{T-1} B_{0, k}
$$

with some constant B depending only on α, B_{1} and B_{2}. Moreover, if for any $\delta>0$

$$
\mathbb{P}\left(\left|\mathbb{E}_{\mathcal{F}_{j}}\left[Z_{\tau_{j+1}}\right]-Z_{j}\right| \leq \delta\right) \leq \bar{B}_{0, j} \delta^{\bar{\alpha}}
$$

with some positive constants $\bar{\alpha}$ and $\bar{B}_{0, j}, j=0, \ldots, T-1$, then

$$
\mathbb{E}\left[\left(Z_{\widehat{\tau}_{0, M}}-Z_{\widehat{\tau}_{0}}\right)^{2}\right] \leq M^{-\bar{\alpha} / 2} 2 B_{1}^{2} \bar{B} \sum_{j=0}^{T-1} \bar{B}_{0, j}
$$

Theorem 4. Introduce for $\mathcal{Z}:=\max _{j=0, \ldots, T}\left(Z_{j}-\pi_{j}\right)$, the random set

$$
\mathcal{Q}=\left\{j: Z_{j}-\pi_{j}=\mathcal{Z}\right\}
$$

and the \mathcal{F}_{T} measurable random variable

$$
\Lambda:=\min _{j \notin \mathcal{Q}}\left(\mathcal{Z}-Z_{j}+\pi_{j}\right),
$$

with $\Lambda:=+\infty$ if $\mathcal{Q}=\{0, \ldots, T\}$. Obviously $\Lambda>0$ a.s. Further suppose that

$$
\mathbb{E}\left[\Lambda^{-\xi}\right]<\infty \text { for some } 0<\xi \leq 1, \quad \text { and } \quad \# \mathcal{Q}=1
$$

It then holds,

$$
\left|\widetilde{Y}_{0}-\widetilde{Y}_{0, M}\right| \leq C M^{-\frac{\xi+1}{2}}
$$

for some constant C.

For a fixed natural number L and a geometric sequence $m_{l}=m_{0} \kappa^{l}$, for some $m_{0}, \kappa \in \mathbb{N}, \kappa \geq 2$, we consider in the spirit of [4] the telescoping sum

$$
\widehat{Y}_{m_{L}}=\widehat{Y}_{m_{0}}+\sum_{l=1}^{L}\left(\widehat{Y}_{m_{l}}-\widehat{Y}_{m_{l-1}}\right)
$$

where $\widehat{Y}_{m}:=\widehat{Y}_{0, m}$. Next we take a set of natural numbers $\mathbf{n}:=\left(n_{0}, \ldots, n_{L}\right)$ satisfying $n_{0}>\ldots>n_{L} \geq 1$, and simulate an initial set of cash-flows

$$
\left\{Z_{\widehat{\tau}_{m_{0}}}^{(j)}, \quad j=1, \ldots, n_{0}\right\}
$$

due to an initial set of trajectories $\left\{X^{0, x,(j)}, j=1, \ldots, n_{0}\right\}$, where

$$
Z_{\widehat{\tau}_{m_{0}}}^{(j)}:=Z_{\widehat{\tau}_{0, m_{0}}^{(j)}}\left(X_{\widehat{\tau}_{0, m_{0}}^{(j)}}^{0, x,(j)}\right)
$$

Next we simulate independently for each level $l=1, \ldots, L$, a set of pairs

$$
\left\{\left(Z_{\widehat{\tau}_{m_{l}}}^{(j)}, Z_{\widehat{\tau}_{m_{l-1}}}^{(j)}\right), \quad j=1, \ldots, n_{l}\right\}
$$

due to a set of trajectories $X^{0, x,(j)}, j=1, \ldots, n_{l}$, to obtain the multilevel estimator

$$
\begin{equation*}
\widehat{\mathcal{Y}}_{\mathbf{n}, \mathbf{m}}:=\frac{1}{n_{0}} \sum_{j=1}^{n_{0}} Z_{\widehat{\tau}_{m_{0}}}^{(j)}+\sum_{l=1}^{L} \frac{1}{n_{l}} \sum_{j=1}^{n_{l}}\left(Z_{\widehat{\tau}_{m_{l}}}^{(j)}-Z_{\widehat{\tau}_{m_{l-1}}}^{(j)}\right) \text { for estimating } \widehat{Y} . \tag{5}
\end{equation*}
$$

4. With the notations of the previous section we define

$$
\widetilde{Y}_{m_{L}}=\widetilde{Y}_{m_{0}}+\sum_{l=1}^{L}\left[\tilde{Y}_{m_{l}}-\widetilde{Y}_{m_{l-1}}\right]
$$

where $\widetilde{Y}_{m}:=\widetilde{Y}_{0, m}$. Given a sequence $\mathbf{n}=\left(n_{0}, \ldots, n_{L}\right)$ with $1 \leq n_{0}<\ldots<n_{L}$, we then simulate for $l=0$ an initial set of trajectories

$$
\left\{\left(Z_{j}^{(i)}, \pi_{j, m_{0}}^{(i)}\right), \quad i=1, \ldots, n_{0}, \quad j=0, \ldots, T,\right\}
$$

of the two-dimensional vector process $\left(Z_{j}, \pi_{j, m_{0}}\right)$, and then for each level $l=$ $1, \ldots, L$, independently, a set of trajectories

$$
\left\{\left(Z_{j}^{(i)}, \pi_{j, m_{l-1}}^{(i)}, \pi_{j, m_{l}}^{(i)}\right), \quad i=1, \ldots, n_{l}, \quad j=0, \ldots, T\right\}
$$

of the vector process $\left(Z_{j}, \pi_{j, m_{l-1}}, \pi_{j, m_{l}}\right)$. Based on this simulation we consider the following multilevel estimator:

$$
\begin{equation*}
\widetilde{\mathcal{Y}}_{\mathbf{n}, \mathbf{m}}:=\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} \mathcal{Z}_{m_{0}}^{(i)}+\sum_{l=1}^{L} \frac{1}{n_{l}} \sum_{i=1}^{n_{l}}\left[\mathcal{Z}_{m_{l}}^{(i)}-\mathcal{Z}_{m_{l-1}}^{(i)}\right] \tag{6}
\end{equation*}
$$

with $\mathcal{Z}_{m_{l}}^{(i)}:=\max _{j=0, \ldots, T}\left(Z_{j}^{(i)}-\pi_{j, m_{l}}^{(i)}\right), i=1, \ldots, n_{l}, l=0, \ldots, L$.
5. We now consider the numerical complexity of the multilevel estimators (5) and (6), for convenience generically denoted by $X_{\mathbf{n}, \mathbf{m}}$. Assume that there are some positive constants $\gamma, \beta, \mu_{\infty}, \sigma_{\infty}$ and \mathcal{V}_{∞} such that $\operatorname{Var}\left[\mathcal{X}_{m}\right] \leq \sigma_{\infty}^{2}$,

$$
\begin{align*}
\left|X-\mathbb{E}\left[\mathcal{X}_{m}\right]\right| & \leq \mu_{\infty} m^{-\gamma}, \quad m \in \mathbb{N} \quad \text { and } \tag{7}\\
\mathbb{E}\left[\mathcal{X}_{m_{l}}-\mathcal{X}_{m_{l-1}}\right]^{2} & \leq \mathcal{V}_{\infty} m_{l}^{-\beta}, \quad l=1, \ldots, L \tag{8}
\end{align*}
$$

Theorem 5. Let us assume that $0<\beta \leq 1, \gamma \geq \frac{1}{2}$ and $m_{l}=m_{0} \kappa^{l}$ for some fixed κ and $m_{0} \in \mathbb{N}$. Fix some $0<\epsilon<1$. Let $L=L(\epsilon)$ be the integer part of

$$
\begin{aligned}
& \gamma^{-1} \ln ^{-1} \kappa \ln \left[\frac{\sqrt{2} \mu_{\infty}}{m_{0}^{\gamma} \epsilon}\right], \quad \text { and } \quad n_{l}=n_{0} \kappa^{-l(1+\beta) / 2} \quad \text { with } \\
& n_{0}= \\
& n_{0}(\epsilon)=\frac{2 \sigma_{\infty}^{2}}{\epsilon^{2}}+\frac{2 \mathcal{V}_{\infty}}{\epsilon^{2} m_{0}^{\beta}} \frac{\kappa^{L(1-\beta) / 2}-1}{\kappa^{(1-\beta) / 2}-1} \kappa^{(1-\beta) / 2} .
\end{aligned}
$$

Then the complexity needed to achieve the accuracy $\varepsilon:=\sqrt{\mathbb{E}\left[\left(X-X_{\mathbf{n}, \mathbf{m}}\right)^{2}\right]}<\varepsilon$ is

$$
\begin{gathered}
\mathcal{C}_{M L}^{\mathbf{n}, \mathbf{m}}(\epsilon)=O\left(\epsilon^{-2-\frac{1-\beta}{\gamma}}\right), \quad \epsilon \searrow 0, \quad \text { for } \beta<1 \\
\mathcal{C}_{M L}^{\mathbf{n}, \mathbf{m}}(\epsilon)=O\left(\epsilon^{-2} \ln ^{2} \epsilon\right), \quad \epsilon \searrow 0, \quad \text { for } \beta=1
\end{gathered}
$$

References

[1] L. Andersen and M. Broadie (2004). A primal-dual simulation algorithm for pricing multidimensional American options. Management Sciences, 50(9), 1222-1234.
[2] D. Belomestny, J. Schoenmakers (2011). Multilevel dual approach for pricing American style derivatives. WIAS Preprint 1647, Fin. and Stoch. under revision.
[3] D. Belomestny, M. Ladkau and J. Schoenmakers (2012). Simulation based policy iteration for American style derivatives - a multilevel approach. WIAS Preprint.
[4] M.B. Giles (2008). Multilevel Monte Carlo path simulation. Operations Research 56(3):607-617.
[5] M. Haugh, L. Kogan (2004). Pricing American options: a duality approach. Operations Research, 52(2), 258-270.
[6] R. Howard (1960). Dynamic programming and Markov processes. Cambridge, Massachusetts: MIT Press
[7] A. Kolodko, J. Schoenmakers (2006). Iterative construction of the optimal Bermudan stopping time. Finance and Stochastics, 10, 27-49.
[8] L.C.G. Rogers (2002). Monte Carlo valuation of American options. Mathematical Finance, 12, 271-286.

[^0]: Speaker: John Schoenmakers, e-mail: schoenma@wias-berlin.de

