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1. Let (Zj)j≥0 be a nonnegative adapted process on a filtered probability space
(Ω,F = (Fj)j≥0,P) representing the discounted payoff of an American option,
so that the holder of the option receives Zj if the option is exercised at time
j ∈ {0, . . . , T} with T ∈ N+. The pricing of American options can be formulated
as a primal-dual problem. The primal representation corresponds to the following
optimal stopping problems

Y ∗j := max
τ∈T [j,...,T ]

EFj [Zτ ], j = 0, . . . , T,

where T [j, . . . , T ] is the set of F-stopping times taking values in {j, . . . , T}. The

process
(
Y ∗j
)
j≥0

is called the Snell envelope. Y ∗ is a supermartingale satisfying

the Bellman principle

Y ∗j = max
(
Zj ,EFj [Y

∗
j+1]

)
, 0 ≤ j < T, Y ∗T = ZT .

An exercise policy is a family of stopping times (τj)j=0,...,T such that τj ∈ T [j, . . . , T ].
During the nineties the primal approach was the only method available. Some

years later a quite different “dual” approach has been discovered by [8] and [5].
The next theorem summarizes their results.

Theorem 1. Let M denote the space of adapted martingales, then we have the
following dual representation for the value process Y ∗j

Y ∗j = inf
π∈M

EFj

[
max

s∈{j,...,T}
(Zs − πs + πj)

]

= max
s∈{j,...,T}

(Zs − π∗s + π∗j ) a.s.,

where
Y ∗j = Y ∗0 + π∗j −A∗j (1)

is the (unique) Doob decomposition of the supermartingale Y ∗j . That is, π∗ is a
martingale and A∗ is an increasing process with π0 = A0 = 0 such that (1) holds.

2. Assume that we are given a stopping family (τj) that is consistent, i.e.

τj > j ⇒ τj = τj+1, j = 0, . . . , T − 1.
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The stopping policy defines a lower bound for Y ∗ via

Yj = EFj [Zτj ], j = 0, . . . , T.

Consider now a new family (τ̂j)j=0,...,T defined by

τ̂j := inf
{
k : j ≤ k < T, Zk ≥ EFk [Zτk+1

]
}
∧ T. (2)

The basic idea behind (2) goes back to [6] in fact. For more general versions of
policy iteration and their analysis, see [7]. Next, we introduce the (Fj)-martingale

πj =

j∑

k=1

(
EFk [Zτk ]− EFk−1

[Zτk ]
)
, j = 0, . . . , T, (3)

and then consider,

Ỹj := EFj

[
max

k=j,...,T
(Zk − πk + πj)

]
,

along with

Ŷj := EFj [Zτ̂j ], j = 0, . . . , T.

The following theorem states that Ŷ is an improvement of Y and that the Snell
envelope process Y ∗j lies between Ŷj and Ỹj with probability 1.

Theorem 2. It holds

Yj ≤ Ŷj ≤ Y ∗j ≤ Ỹj , j = 0, . . . , T a.s.

3. The main issue in the Monte Carlo construction of Ŷ and Ỹ in a Markovian
environment is the estimation of the conditional expectations in (2) and (3). We
thus assume that the cash-flow Zj is of the form Zj = Zj(Xj) for some underlying
(possibly high-dimensional) Markovian process X . A canonical approach is the
use of sub simulations. In this respect we consider an enlarged probability space
(Ω,F′,P), where F′ = (F ′j)j=0,...,T and Fj ⊂ F ′j for each j. On the enlarged space

we consider F ′j measurable estimations Cj,M of Cj = EFj
[
Zτj+1

]
as being standard

Monte Carlo estimates based on M sub simulations. More precisely

Cj,M =
1

M

M∑

m=1

Z
τ
(m)
j+1

(X
j,Xj

τ
(m)
j+1

)

where the τ
(m)
j+1 are evaluated on M sub trajectories all starting at time j in Xj .

Obviously, Cj,M is an unbiased estimator for Cj with respect to EFj [·] . We thus
end up with a simulation based versions of (2) and (3) respectively,

τ̂j,M := inf {k : j ≤ k < T, Zk > Ck,M} ∧ T, j = 0, ..., T,



Plenary talks 51

πj,M :=

j∑

k=1

(Zk − Ck−1,M ) 1{τk=k} +

j∑

k=1

(Ck,M − Ck−1,M ) 1{τk>k}.

Denote
Ŷj,M := EFj [Zτ̂j,M ], j = 0, . . . , T

and

Ỹj,M := EFj

[
max

k=j,...,T
(Zk − πk,M + πj,M )

]
.

Theorem 3. Let us assume that there exist constants B0,j > 0, j = 0, . . . , T − 1,
and α > 0, such that for any δ > 0 and j = 0, . . . , T − 1,

P(|EFj [Zτ̂j+1
]− Zj | ≤ δ) ≤ B0,jδ

α.

Further suppose that there are constants B1 and B2, such that |Zj | < B1 and

VarFj [Zτj+1 ] := EFj [(Zτj+1 − Cj)2] < B2, a.s. (4)

for j = 0, . . . , T − 1. It then holds,

|Ŷ0 − Ŷ0,M | ≤M−
1+α
2 B

T−1∑

k=0

B0,k,

with some constant B depending only on α, B1 and B2. Moreover, if for any δ > 0

P(|EFj [Zτj+1 ]− Zj | ≤ δ) ≤ B0,jδ
α

with some positive constants α and B0,j , j = 0, . . . , T − 1, then

E[(Zτ̂0,M − Zτ̂0)2] ≤M−α/22B2
1B

T−1∑

j=0

B0,j .

Theorem 4. Introduce for Z := maxj=0,...,T (Zj − πj), the random set

Q = {j : Zj − πj = Z} ,

and the FT measurable random variable

Λ := min
j /∈Q

(Z − Zj + πj) ,

with Λ := +∞ if Q = {0, . . . , T}. Obviously Λ > 0 a.s. Further suppose that

E[Λ−ξ] <∞ for some 0 < ξ ≤ 1, and #Q = 1.

It then holds, ∣∣∣Ỹ0 − Ỹ0,M

∣∣∣ ≤ CM−
ξ+1
2

for some constant C.
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For a fixed natural number L and a geometric sequence ml = m0κ
l, for some

m0, κ ∈ N, κ ≥ 2, we consider in the spirit of [4] the telescoping sum

ŶmL = Ŷm0 +

L∑

l=1

(
Ŷml − Ŷml−1

)
,

where Ŷm := Ŷ0,m. Next we take a set of natural numbers n : = (n0, . . . , nL)
satisfying n0 > ... > nL ≥ 1, and simulate an initial set of cash-flows

{
Z

(j)
τ̂m0

, j = 1, ..., n0

}
,

due to an initial set of trajectories {X0,x,(j)
· , j = 1, ..., n0}, where

Z
(j)
τ̂m0

:= Z
τ̂
(j)
0,m0

(
X

0,x,(j)

τ̂
(j)
0,m0

)
.

Next we simulate independently for each level l = 1, ..., L, a set of pairs
{

(Z
(j)
τ̂ml
, Z

(j)
τ̂ml−1

), j = 1, . . . , nl

}

due to a set of trajectories X
0,x,(j)
· , j = 1, ..., nl, to obtain the multilevel estimator

Ŷn,m :=
1

n0

n0∑

j=1

Z
(j)
τ̂m0

+

L∑

l=1

1

nl

nl∑

j=1

(
Z

(j)
τ̂ml
− Z(j)

τ̂ml−1

)
for estimating Ŷ . (5)

4. With the notations of the previous section we define

ỸmL = Ỹm0 +

L∑

l=1

[Ỹml − Ỹml−1
],

where Ỹm := Ỹ0,m. Given a sequence n = (n0, . . . , nL) with 1 ≤ n0 < . . . < nL, we
then simulate for l = 0 an initial set of trajectories

{
(Z

(i)
j , π

(i)
j,m0

), i = 1, ..., n0, j = 0, . . . , T,
}

of the two-dimensional vector process (Zj , πj,m0), and then for each level l =
1, . . . , L, independently, a set of trajectories

{
(Z

(i)
j , π

(i)
j,ml−1

, π
(i)
j,ml

), i = 1, ..., nl, j = 0, . . . , T
}

of the vector process (Zj , πj,ml−1
, πj,ml). Based on this simulation we consider the

following multilevel estimator:

Ỹn,m :=
1

n0

n0∑

i=1

Z(i)
m0

+

L∑

l=1

1

nl

nl∑

i=1

[Z(i)
ml
−Z(i)

ml−1
] (6)
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with Z(i)
ml := maxj=0,...,T

(
Z

(i)
j − π

(i)
j,ml

)
, i = 1, . . . , nl, l = 0, . . . , L.

5. We now consider the numerical complexity of the multilevel estimators (5) and
(6), for convenience generically denoted by Xn,m. Assume that there are some
positive constants γ, β, µ∞, σ∞ and V∞ such that Var[Xm] ≤ σ2

∞,

|X − E[Xm]| ≤ µ∞m−γ , m ∈ N and (7)

E[Xml −Xml−1
]2 ≤ V∞m−βl , l = 1, . . . , L. (8)

Theorem 5. Let us assume that 0 < β ≤ 1, γ ≥ 1
2 and ml = m0κ

l for some fixed
κ and m0 ∈ N. Fix some 0 < ε < 1. Let L = L (ε) be the integer part of

γ−1 ln−1 κ ln

[√
2µ∞
mγ

0ε

]
, and nl = n0κ

−l(1+β)/2 with

n0 = n0 (ε) =
2σ2
∞
ε2

+
2V∞
ε2mβ

0

κL(1−β)/2 − 1

κ(1−β)/2 − 1
κ(1−β)/2.

Then the complexity needed to achieve the accuracy ε :=
√
E[(X −Xn,m)2] < ε is

Cn,mML (ε) = O(ε
−2− 1−β

γ ), ε↘ 0, for β < 1,

Cn,mML (ε) = O(ε−2 ln2 ε), ε↘ 0, for β = 1.
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