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Optimal dividend-payout in random discrete time

Hansjörg Albrecher1 Nicole Bäuerle2 Stefan Thonhauser1

1University of Lausanne, Switzerland
2Karlsruhe Institute of Technology, Germany

1. The identification of optimal pay-out schemes for dividends to shareholders in
an insurance context is a classical problem of risk theory. Given a stochastic process
describing the surplus of an insurance portfolio as a function of time, it is a natural
question at which points in time and to which amount dividends should be paid out
to the shareholders. These pay-outs then reduce the current surplus. A popular
optimality criterion is to maximize the expected total sum of discounted dividend
payments until ruin (i.e. the dividend payments stop as soon as the surplus becomes
negative for the first time). This problem was studied over the last decades under
increasingly general model assumptions. Extending earlier work of de Finetti [4],
Gerber [5] showed that if the surplus process is modeled by a random walk in
discrete state space, then a so-called band-policy maximizes the expected sum of
discounted dividend payments until ruin. He then also established this result for a
continuous-time surplus process of compound Poisson type with downward jumps,
and showed that in case of exponentially distributed claim sizes this optimal band-
policy collapses to a barrier-policy, i.e. whenever the surplus process is above a
certain barrier b, the excess is paid out as dividends immediately, and no dividends
are paid out below this level b. In recent years, this problem was studied for
general spectrally negative Lévy processes, and the most general conditions on
such a process for which barrier-policies are optimal have recently been given in
Loeffen & Renaud [7]. We refer to Schmidli [8] and Albrecher & Thonhauser [2]
for an overview of mathematical tools and results in this area.

2. The implementation of the optimal pay-out policies that were identified for
the above-mentioned continuous-time models of the surplus process need continu-
ous observation of (and usually continuous intervention into) the surplus process,
which can not be realized in practice. In this talk we therefore follow a somewhat
different approach, namely to still consider a continuous-time model for the surplus
process, as the latter is useful for many reasons, but to assume that observations
(of possible ruin) and interventions (i.e. dividend pay-outs) are only possible at
discrete points in time, and these time points are determined by a renewal process
which is independent of the surplus process. This will enable a general treatment of
the stochastic control problem to determine the optimal dividend pay-out scheme.

3. We will work with a general Lévy process (St) for the underlying surplus process.
At (random) discrete time points 0 = Z0 < Z1 < . . . we are allowed to pay out
dividends. We assume that the time lengths Tn := Zn−Zn−1, n = 1, 2, . . . between
interventions form a sequence of i.i.d. random variables which is also independent

Speaker: Nicole Bäuerle, e-mail: nicole.baeuerle@kit.edu
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of the stochastic process (St). Thus it is enough to observe the process
(
S(Zn)

)
which evolves in discrete time. All quantities are assumed to be defined on a
common probability space (Ω,F ,P). In what follows we denote by

Yn := S(Zn)− S(Zn−1), n = 1, 2, . . .

the increments of the surplus process. The aim is now to find a dividend pay-out
policy such that the expected discounted dividends until ruin are maximized. Note
that ruin is defined as the event that the surplus process at an observation time
point is negative, so we disregard what happens between the time points (Zn).
Obviously the bivariate sequence (Tn, Yn) is i.i.d.

In order to solve this problem we use the theory of Markov Decision Processes
(for details see e.g. Bäuerle & Rieder [3]). More precisely we assume that R+ is the
state space of the problem where the state x represents the current surplus. The
action space is R+ where the action a represents the amount of money which is
paid out as dividend. When the surplus is x we obtain the constraint that we have
to restrict the dividend pay-out to the set D(x) := [0, x]. The one-stage reward of
the problem is r(x, a) =: a. A dividend policy π = (f0, f1, . . .) is simply a sequence
of decision rules fn, where a function fn : R+ → R+ is called decision rule when it
is measurable and f(x) ∈ D(x) is satisfied. The controlled surplus process (Xn) is
given by the transition

Xn := Xn−1 − fn−1(Xn−1) + Yn, n = 1, 2, . . . .

When we denote by

τ := inf{n ∈ N0 : Xn < 0}

the ruin time point in discrete time and by δ > 0 the discount rate, then the
expected discounted dividends under pay-out policy π = (f0, f1, . . .) are given by

V (x;π) := Ex
[ τ−1∑
n=0

e−δZnfn(Xn)
]
, x ∈ R+.

The optimization problem then is

V (x) := sup
π
V (x;π), x ∈ R+,

where the supremum is taken over all policies.

Under some mild assumptions it can be shown that the optimal policy is sta-
tionary and a band policy, i.e. the optimal policy is given by f∞ and there exists
a partition of R+ of the form A ∪B = R+ with

f(x) =

{
0, if x ∈ B,

x− z where z = sup{y | y ∈ B ∧ 0 ≤ y < x}, if x ∈ A.
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4. Suppose now that the surplus process is a compound Poisson process with claim
arrival process (Nt) having intensity λ > 0 and exponentially distributed claim sizes
Ui with parameter ν > 0. The premium rate is again denoted by c. Thus we obtain

St = x+ ct−
Nt∑
i=1

Ui, t ≥ 0.

The inter-observation times are also assumed to be exponentially distributed with
parameter γ > 0 (i.e. the observations are determined by a homogeneous Poisson
process with intensity γ).

In this case it can be shown that the optimal policy is stationary and a barrier
policy, i.e. there exists a number c ≥ 0 such that

f(x) =

{
0, if x ≤ c

x− c, if x > c.

5. Consider now a sequence of the exponential models studied in the previous
section. More precisely, let us assume that in the n-th model, the Poisson process
(Nn

t ) has intensity λn := λn, the claim sizes Uni are exponentially distributed
with parameter νn := ν

√
n and the premium rate is cn := λ

ν

√
n(ρn + 1) with

limn→∞
√
nρn = κ. The parameter γ of the random observation time and the

discount factor δ are kept fixed. Then it is well known that the corresponding
compound Poisson process can be written as

Snt := x+ cnt−
Nn
t∑

i=1

Uni

d
= x+

λ

ν

√
n(ρn + 1)t−

Nnt∑
i=1

Ui√
n

= x+
λ

ν

√
nρnt−

√
2λ/ν2

( S̄(nt)− (λ/ν)nt√
2λ/ν2

√
n

)
where S̄(t) :=

∑Nt
i=1 Ui. From this representation it follows that (Snt ) converges for

n → ∞ weakly to a diffusion (see e.g. Grandell [6, Sec.1.2]). More precisely we
have

(Snt )⇒ (x+
λ

ν
κ t+

√
2λ/ν2Wt)

where ⇒ denotes weak convergence on the space of càdlàg functions and (Wt) is a
Brownian motion. Obviously the limiting model is again in the general Lévy class
that we considered in the beginning. Since we know already from the previous
section that for every exponential model a barrier-policy is optimal, one can show
– by taking limits – that the same is true for a diffusion model.

6. The talk is based on [1].
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Stochastic Perron’s method and verification without smoothness
using viscosity comparison: obstacle problems and Dynkin games

Erhan Bayraktar1 Mihai Sirbu2

1Department of Mathematics, University of Michigan, USA
2Department of Mathematics, University of Texas at Austin, USA

1. In [1], the authors introduce a stochastic version of Perron’s method to construct
viscosity (semi)-solutions for linear parabolic (or elliptic) equations, and use vis-
cosity comparison as a substitute for verification (Itô’s lemma). The present note
extends the Stochastic Perron’s method to the case of (double) obstacle problems
associated to games of optimal stopping, the so called Dynkin games introduced
in [2]. This is the first instance of a non-linear problem that can be treated using
Stochastic Perron, and represents a very important step towards treating gen-
eral stochastic control problems and their corresponding Hamilton-Jacobi-Bellman
equations. As a matter of fact, we conjecture that basically any partial differential
equation which is related to a stochastic representation can be potentially treated
using some modification of what we call the Stochastic Perron’s method. We intend
to present some other important cases in future work.

2. Overview of existing literature on (games of) optimal stopping. Opti-
mal stopping and the more general problem of optimal stopping games are funda-
mental problems in stochastic optimization. Such problems have been well studied
for more than fifty year to various degrees of generality, and very general results
have been obtained. If the optimal stopping is associated to Markov diffusions,
there are two classic approaches to solve the problem:

1. The analytic approach consists in writing the Hamilton-Jacobi-Bellman
equation (which takes the form of an obstacle problem), finding a smooth solution
and then go over verification arguments. The method works only if the solution
to the HJB is smooth enough to apply Itô’s formula along the diffusion. This is
particularly delicate if the diffusion degenerates.

2. The probabilistic approach consists in a very fine analysis of the value func-
tion(s), using heavily the Markov property and conditioning, to show a similar
conclusion to the analytic approach: it is optimal to stop as soon as the player(s)
reach(es) the contact region between the value function and the obstacle. In the
case of optimal stopping (only one player) the value function can be characterized as
the least excessive (super-harmonic) function. Recently, a similar characterization
of the value function was studied for the case of games in [3]. Usually, the proba-
bilistic approach is further used to draw other important conclusions, resembling
the analytic approach. More precisely, it can be shown that the value function is a
viscosity solution of the HJB. If a comparison results holds, then the value function
is the unique viscosity solution, and finite-difference numerical methods can be used
to approximate it.

Speaker: Erhan Bayraktar, e-mail: erhan@umich.edu
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3. Our contribution. Compared to the existing large body of work on optimal
stopping (games), we view our contribution as mostly conceptual. We provide here
a new approach that lies in between the analytic and the probabilistic approaches
described above. More precisely, we propose a probabilistic version of the analytic
approach. We believe our method is novel in that

1. compared to the analytic approach, it does not require the existence of a
smooth solution. This is because we do not apply Itô’s formula to the solution of
the PDE, but only to the smooth test functions.

2. compared to the probabilistic approach, we do not perform any direct anal-
ysis on the value function(s). As a matter of fact, even the very Markov property
needed for such analysis is not assumed. The Markov property is hidden behind
the uniqueness of the viscosity solution. This is all a consequence of the (same)
fact the we apply Itô’s lemma to the smooth test functions (as described above)
along solutions of SDE without any Markov assumption on the SDE.

We believe our method displays a deeper connection between (stopped) dif-
fusions and (viscosity solutions of) free boundary problems. The fine interplay
between how much smoothness is needed for a solution of a PDE in order to apply
Itô’s formula along the SDE (which is needed in the classical analytic approach)
is hidden behind the definition of stochastic super- and sub-solutions, which traces
back to the seminal work of Stroock and Varadhan [6].

We could summarize the message of our main result as: if a viscosity com-
parison result for the HJB holds, then there is no need to either find a smooth
solution of the HJB, or to analyze the value function(s) to solve the optimization
problem. Formally, all classic results hold as expected, i.e., the unique continuous
(but possibly non-smooth) viscosity solution is equal to the value of the game and
it is optimal for the player(s) to stop as soon as they reach their corresponding
contact/stopping regions. This amounts to a verification without smoothness, in
the spirit of the analytic approach to optimal stopping. This resolution of the
problem seems shorter (and more elementary) than the probabilistic approach de-
scribed above. In addition, our main result tells us that the value function is equal
to the infimum over stochastic super-solutions or the supremum over stochastic
sub-solutions, resembling the probabilistic results in [3].

Compared to the previous work on Stochastic Perron’s method [1], the contri-
bution of the present note lies in the precise and proper identification of stochastic
sub- and super- solutions for the obstacle problem. The technical contribution con-
sists in proving that, having identified such a definition of stochastic solutions, the
Perron’s method actually does produce viscosity super- and sub-solutions. The
proofs turn out to be very different from [1].

Acknowledgements. The research of E. Bayraktar was supported in part by the
National Science Foundation under grants DMS 0906257, DMS 0955463, and DMS
1118673.
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Pricing of swing options in continuous time

Christian Bender

Saarland University, Saarbrücken, Germany

This talk is devoted to the pricing of swing options in continuous time. In
general, the holder of a swing option has the right to exercise a certain total vol-
ume up to maturity, but she is subjected to some constraints. Depending on the
formulation of the constraints, swing option pricing can be treated as a multiple
stopping problem or as a stochastic control problem.

To be more precise, let us assume that the payoff of the option is modeled
by an adapted stochastic process X = (X(t), t ∈ [0, T ]) on a filtered probability
space (Ω,F , (Ft)t∈[0,T ], P ) satisfying the usual conditions. We suppose that X is
nonnegative and the paths of X are rightcontinuous with left limits. Moreover,

E[ sup
0≤t≤T

|X(t)|2] <∞.

1. Formulation as a multiple stopping problem. Carmona and Touzi [2] sug-
gested to formulate swing option pricing in continuous time via a multiple stopping
problem. The holder of the option has the right to exercise the option up to N
times. We here use the convention that she receives X(τ)/N , if she exercises the
option at time τ . So the aim of the holder of the option is to choose stopping times
τ1, . . . , τN in an ‘admissible’ way such that

E

[
1

N

N∑
ν=0

X(τν)

]

is maximized. Here we already assume that the probability measure P is a pricing
measure rather than the physical measure, i.e. all tradable and storable assets
are σ-martingales under P . It is industry practice to impose a minimal waiting
time of δ > 0 in between two exercises. E.g., when exercising a right involves the
physical delivery of a commodity, this waiting time, which is known as the refraction
period, is usually at least as large as the time required for delivery. Incorporating
this constraint leads to the following multiple stopping problem: The price of the
swing option with N exercise rights and refraction period δ at a stopping time σ
is given by

Y ∗,N (σ) := esssup
(τ1,...,τN )∈SNδ,σ

1

N

N∑
ν=1

E[X(τν)|Fσ], (1)

where SNδ,σ contains those n-tuples of stopping times (τ1, . . . , τN ) such that τ1 ≥ σ
and τν ≥ τν−1 + δ for ν = 2, . . . , N . Here we apply the convention that X(t) = 0
for t > T , i.e. a right used later than T remains in fact unexercised.
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In this setting we show the following reduction principle to a single stopping
problem, which generalizes a result by Carmona and Touzi [2]:

There is an adapted process XN (t), whose discontinuities from the right are in-
cluded in the set DN := {T − νδ; ν = 0, . . . , N − 1}, such that

Y ∗,N (σ) = esssup
τ∈Sσ

1

N
E[XN (τ)|Fσ] (2)

and

E[ sup
0≤t<∞

|XN (t)|2] <∞.

Here XN (t) is a modification of X(t) + (N − 1)E[Y ∗,N−1(t+ δ)|Ft] such that

XN (τ) = X(τ) + (N − 1)E[Y ∗,N−1(τ + δ)|Fτ ]

for every stopping time τ .

Some technical problems arise in the derivation of this result due to the fact that
the Snell envelopes Y ∗,N (t) may exhibit discontinuities from the right for N ≥ 2.

We also discuss existence of optimal families of stopping times under the addi-
tional assumption that X is leftcontinuous in expectation. Moreover we derive a
dual representation for the multiple stopping problem as a minimization problem
over martingales and processes of bounded variation, which generalizes a result in
discrete time by Schoenmakers [4].

2. Formulation as optimal control problem. Suppose now that the number
of exercise rights tends to infinity and the refraction period δN tends to zero. If
limN→∞NδN = 1

L , then the natural limiting problem of (1) is the classical control
problem

J(σ, Y ) := esssup
u∈U(σ,Y )

E

[∫ T

σ
u(s)X(s)ds

∣∣∣∣Fτ] (3)

where U(σ, Y ) is the set of all adapted processes with values in [0, L] such that∫ T
σ u(s)ds ≤ 1 − Y . Here u can be interpreted as the rate at which the volume is

consumed by the holder of the option.

Passing to the limit N → ∞ in (2) suggests that (an appropriate version of)
J(t, y) should solve the backward stochastic partial differential equation (BSPDE)

J(t, y) = E

[
L

∫ T

t
(X(s) +D+

y J(s, y))+ds

∣∣∣∣Ft] ,
J(T, y) = 0, J(t, 1) = 0. (4)

Here D+
y J denotes the right-hand side derivative of J in y. In a Markovian setting

this BSPDE reduces formally to a classical Hamilton-Jacobi-Bellman equation. It
can also be connected to stochastic Hamilton-Jacobi-Bellman equations in the sense
of Peng [3]. We show that the value process J(t, y) solves the BSPDE (4) and that



24 Plenary talks

the right-hand side derivative can be replaced by the left-hand side derivative in
(4). To this end we discuss the connection of the discontinuities of D+

y J(s, y) in
time and space.

We also show that the derivative DyJ(s, y) exists under the additional assump-
tion that X is leftcontinuous in expectation and represent it as an optimal stopping
problem of X restricted to some subset of predictable stopping times.

Acknowledgements. This talk is partially based on joint work with N. Doku-
chaev (Curtin University) and Christoph Eisinger (Saarland University). Financial
support by the ATN-DAAD Joint Research Co-operation Scheme is gratefully ac-
knowledged.
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Control and Nash games with mean field effect

Alain Bensoussan1 Jens Frehse2 Phillip Yam3

1School of Management, University of Texas – Dallas, USA
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3The Hong Kong Chinese University

Mean field theory has raised a lot of interest in the recent years, see in particu-
lar Lasry-Lions [11], [12], [13], Gueant-Lasry-Lions [8], Huang-Caines-Malhamé [9],
[10], Buckdahn-Li-Peng [7]. There are a lot of applications. In general the applica-
tions concern approximating an infinite number of players with common behavior
by a representative agent. This agent has to solve a control problem perturbed
by a field equation, representing in some way the behavior of the average infinite
number of agents. The state equation is modified by the expected value of some
functional on the state. We first review in this presentation the linear-quadratic
case. This has the advantage of getting explicit solutions. In particular this leads
to the study of Riccati equations. We discuss two approaches. One in which the
agent considers the mean field term as external, and an equilibrium occurs when
this mean field term coincides with the average of his/her own action. The problem
reduces to a fixed point. In another one, the mean field is a functional of the state
and therefore the agent can influence it by his/her own decision. When there is no
control, there is no difference between the two approaches. However, with control
the two approaches are not equivalent. In particular, the fixed point approach leads
to non-symmetric Riccati equations, which have no control interpretation. They
raise interesting mathematical problems of their own. For nonlinear nonquadratic
problems, the approach which has been explored is the endogeneous one. The
control of the representative agent can influence the mean field term, which is the
average of the agents state. The Dynamic pogramming approach fails, because of
the so called inconsistency effect. Fortunately, the stochastic maximum principle
can be applied. The adjoint variables are solutions of stochastic backward differen-
tial equations, with mean field terms. In the approach of Lasry-Lions, the starting
point is a Nash equilibrium game for a very large number of players. In principle,
the problem can be treated by Dynamic Programming. The Bellman equation be-
comes a system of nonlinear partial differential equations, for which the techniques
of [2] can be considered. When the number of players becomes infinite, and all
of them are identical, then going to the limit, one obtains an Hamilton-Jacobi-
Bellman equation, with mean field term. The mean field term is reminiscent of the
coupling with other players, which existed before going to the limit. We compare
the various approaches, and their interprations as control problems. In Lasry-Lions
approach the limit is obtained thanks to ergodic theory, which means that the limit
control problem is an ergodic control problem, with mean field effect.

There is a different and interesting approach which also leads to similar types
of P.D.E with mean-field terms. The state equation is the Chapman-Kolmogorov
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equation, describing the probability measure of the state. It is the dual control
problem. Then, the Bellman equation can be interpreted as a necessary condition
of optimality for the dual problem. To generate mean-field terms, it is sufficient to
consider objective functions which are not just linear in the probability measure,
but more complex.

This approach has a different type of application. In the traditional stochastic
control problem, the objective functional is the expected value of a cost depending
on the trajectory. So it is linear in the probability measure. This type of functional
leaves out many current considerations in control theory, namely situations where
one wants to take into consideration not just the expected value, but also the
variance. This case occurs often in Risk Management. Moreover, one may be
interested by several functionals on the trajectory, even though one is satisfied
with expected values. If one combines these various expected values in a single
pay-off, one is lead naturally to mean-field problems. They are meaningful even
without considering ergodic theory, i. e. long term behavior.

Anyway, in all the previous considerations, the averaging approach reduces an
infinite number agent to a representative agent, who has a control problem to solve,
with an external effect, representing the averaged impact of the infinite number of
players. Of course, this framework relies on the assumption that the players behave
in a similar way. By construction, it eliminates the situation of a remaining Nash
equilibrium for a finite number of players, with mean field terms.

In most real problems of economics, there is not just one representative agent
and a large community of identical players, which impact with a mean field term.
There is the situation of several major players, and large communities.

So a natural question is to consider the problem of these major players. They
know that they can influence the community, and they also compete with each
other. So the issue is that of differential games, with mean field terms, and not
of mean field equations arising from the limit of a Nash equilibrium for an infinite
number of players.

One way to recover this system of nonlinear P.D.E. with mean field terms is to
consider averaging 2 within groups. Each of them is composed of an homogeneous
community, but different communities are not identical.

To recover the system of nonlinear P.D.E. it is easier to proceed with the
dual problems as explained above. One can consider a differential game for state
equations which are probability distributions of states, and evolve according to
Chapman-Kolmogorov equations. One recovers nonlinear systems of P.D.E. with
mean field terms, with a different motivation. Another interesting feature of this
approach is that we do not need to consider an ergodic situation, as it is the case
in the standard approach of mean field theory. In fact, considering strictly positive
discounts is quite meaningful in our applications. This leads to systems of non-
linear P.D.E. with mean field coupling terms, that we can study with a minimum
set of assumptions. The ergodic case, when the discount vanishes, requires much
stringent assumptions, as it is already the case when there is no mean field term.
We refer to Bensoussan-Frehse [2], [4] and Bensoussan-Frehse-Vogelgesang [5], [6]
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for the situation without mean field term. Basically our set of assumptions remains
valid and we have to incorporate additional assumptions to deal with the mean field
terms.
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Liquidity, equilibrium and asymmetric information

Umut Çetin Albina Danilova

London School of Economics, UK

1. To formulate the model of the market precisely, let (Ω,F , (Ft)t∈[0,1],P) be a
filtered probability space satisfying the usual conditions of right continuity and
P-completeness. Assume that on this probability space there exist a continuous
random variable V ∈ F0 and a standard Brownian motion B, independent of V .

We consider a market in which a single risky asset is traded. The value of this
asset, V , will be a public knowledge at some future time t = 1. For simplicity of
exposition we assume that the risk free interest rate is 0.

There are three types of agents that interact in this market:
i) Liquidity traders, whose demands are random, price inelastic and do not

reveal any information about the value of V . In particular we assume that
their cumulative demand at time t is given by Zt = σBt.

ii) A single insider who knows V at time t = 0 and is risk neutral. We will
denote insider’s cumulative demand at time t by Xt. The filtration of the
insider, FI , is generated by observing the price of the risky assset and V .

iii) Market makers observe the net supply of the risky asset, Y = X + Z, thus,
their filtration, FM , is generated by Y .
We also assume that the market makers have identical CARA utilities with
the common risk aversion parameter ρ, and compete in a Bertrand fashion for
the net supply of the risky asset. In case of several market makers quoting the
same winning price, we adopt the convention that the total order is equally
split among them. As a result of this competition in the equilibrium each
market maker quotes the price which achieves zero utility gain and, therefore,
Y is split equally. The number of market makers is assumed to be N ≥ 2.

2. The assumption that the markets makers observe only the net supply implies
that they cannot separate the informed and uninformed trades. Hence, their quotes
at time t can only depend on (Ys)

t
s=0. However, we would be looking at only

Markovian equilibrium, thus, we consider only the quotes of the form H(t, Yt).
Additionally, we assume that H is smooth enough, i.e. H(t, y) ∈ C1,2, it is strictly
increasing in y, and satisfies

EH2(1, Z1) <∞ and E
∫ 1

0
H2(t, Zt) dt <∞. (1)

The class of such functions is denoted with H and any H ∈ H is called a pricing
rule.

As any H ∈ H is invertible, observing price is equivalent to observing Y and
therefore the insider can perfectly infer the demand of the liquidity traders since she
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knows her own demand. It follows from this consideration that FIt = σ(V,Zs; s ≤
t). Obviously, for an insider strategy, X, to be admissible, it has to be adapted to
FI . We further require that for a given H ∈ H

Ev
∫ 1

0
H2(t,Xt + Zt) dt <∞, (2)

where Ev is the expectation taken with respect to Pv associated to the insider given
the realisation V = v. Moreover, X is absolutely continuous , i.e. Xt =

∫ t
0 αs ds

(This restriction to the set of absolutely continuous strategies is without loss of
generality since strategies with a martingale component and/or jumps are strictly
suboptimal as shown in [1]). For any given H ∈ H a strategy satisfying the above
conditions is called admissible and the class of admissible strategies will be denoted
by A(H). Observe that if X ∈ A(H) then the terminal wealth of the insider is
given by

WX
1 :=

∫ 1

0
XsdH(s, Ys) +X1(V −H(1, X1)) =

∫ 1

0
(V −H(s,Xs)) dXs. (3)

3. By an equilibrium we mean a pair (H∗, X∗) for H∗ ∈ H and X∗ ∈ A(H∗) such
that

i) given H∗, the insider’s strategy X∗ solves her optimization problem:

Ev[WX∗
1 ] = sup

X∈A(H∗)
Ev[WX

1 ].

ii) GivenX∗, the pricing ruleH∗ satisfies zero-utility gain condition, i.e. (U (Gt))
1
t=0

is a (FM ,P)-martingale, where

Gt := − 1

N

∫ t

0
Y ∗s dH

∗(s, Y ∗s ) + 1t=1
Y ∗1
N

(H∗(Y ∗1 , 1)− V ).

It is shown that in equilibrium the insider drives the total demand so thatH(1, Y1) =
V , i.e. the market price converges to the true price. Given this observation, the
existence of equilibrium will follow from the following theorem:

Theorem 1. Suppose that V = f(η), where η is a standard normal random variable
and f is a strictly increasing function which is either linear or bounded with a
continuous derivative. Then, there is a pair (H,Y ) which solves the following
system:

Ht +
1

2
σ2Hyy = 0 (4)

dξt = σdBt −
σ2ρ

2N
ξtHy(t, ξt)dt (5)

V
d
= H(1, ξ1), (6)
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where
d
= stands for equality in distribution.

Moreover, Hy is bounded with 0 < Hy(t, y) for all (t, y) ∈ [0, 1]×R and ξ is the
unique strong solution of (5). Furthermore, ξ admits a transition density p(s, y; t, z)
such that, for any fixed (t, z), p(s, y; t, z) > 0 on [0, t)× R and is C1,2([0, t)× R).

The optimal demand of the insider and the pricing rule in equilibrium are given
in the following theorem.

Theorem 2. Suppose that V = f(η), where η is a standard normal random variable
and f is either linear or a bounded function with a continuous derivative. Then,
(H∗, X∗) is an equilibrium where

X∗t =

∫ t

0

{
−σ

2ρ

2N
Y ∗s H

∗
y (s, Y ∗s ) + σ2 py

p
(s, Y ∗s ; 1, H∗−1(1, V ))

}
ds

and H∗ and p are the functions defined in Theorem 1.
Moreover, under FM the equilibrium demand evolves as

Y ∗t = σBY
t −

σ2ρ

2N

∫ t

0
Y ∗s H

∗
y (s, Y ∗s ) ds.

In particular, when f(y) = ay + b, then H∗(t, y) = λy + b, where λ is the unique
solution to

1− e−
ρσ2

N
λ =

ρa2

N

1

λ
, (7)

and the equilibrium demand Y ∗ solves

dY ∗t = σdBt +
ρσ2

2N

aη − λY ∗t cosh
(
ρσ2λ
2N (1− t)

)
sinh

(
ρσ2λ
2N (1− t)

) . (8)

4. In this talk I will also discuss the effect of risk aversion of market makers on
various liquidity parameters such as depth and resilience. The comparison with
the corresponding features of the model considered in [1] will also be given.
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Stochastic optimization of sailing trajectories
in an upwind regatta

Robert C. Dalang Frédéric Dumas Laura Vinckenbosch
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1. In a sailboat regatta, the navigator attempts to plan out the fastest possible
course, based on a forecast of wind and weather conditions, as well as to provide
real-time updates when these conditions change. It turns out that some wind
changes are typically as unpredictable as stock market movements, so it is natural
to develop probabilistic models for wind and weather in order to provide tools to
help the navigator make decisions.

The velocity of a sailboat that wants to follow a specific bearing is directly in-
fluenced by the wind speed and direction. Since a sailboat cannot advance directly
into the wind, a boat sailing in an upwind leg must sail at an angle to the wind
(of about 30◦ degrees) and follow a zig-zag trajectory consisting of a sequence of
“tackings,” that is, of changes in direction such that the bow of the yacht crosses
through the eye of the wind. Each tack implies a loss of speed, hence of time,
and the decisions concerning when to tack are a crucial part of the navigator’s
recommendations. Further, since wind direction and speed fluctuate over time, the
choice of bearing is difficult to determine intuitively and must be modified during
the race.

In this talk, we report on a project to formulate this trajectory optimiza-
tion problem in the framework of stochastic control theory. The objective was
twofold: first, to develop statistical models of wind behavior and use them to
perform stochastic optimization under real-world conditions, so as to develop an
onboard decision tool that could provide the navigator of the Swiss team Alinghi
with real-time recommendations for an America’s Cup race, and second, to identify
simpler mathematical models of wind behavior that are amenable to a complete
mathematical analysis by stochastic optimization methods, with the identification
of optimal strategies and rigorous proofs that these strategies are best possible
within the model.

2. A statistical analysis of wind behavior was carried out, in collaboration with
S. Morgenthaler and S. Sardy at the Ecole Polytechnique Fédérale de Lausanne.
Because races occur in the months of May to July, and weather conditions are
different during the rest of the year, relevant data can only be collected during
these months. Furthermore, in the years that preceded the race, few weather
stations were operational and so past data was available only for a limited number
of days. Races occur during the afternoon, so a model for wind that would be
accurate during a two-hour afternoon race period was needed.

On a race day, the morning’s wind could be used to help predict the wind
behavior during the afternoon. On the other hand, racing teams were allowed to
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communicate with the outside world only up to five minutes before the race, and
after that, could only rely on onboard instruments.

Various continuous-time models have been compared, and turn out to depend
on the geographic location: the model we used was different than that suggested in
[2]. In the end, for numerical purposes, the evolution of the wind speed and wind
direction over time were approximated by discrete-time Markov chains. The tran-
sition matrices of these chains were chosen among a small number of possibilities,
corresponding to days classified according to low, medium or high volatility of the
wind. The data collected on the morning before the race was used to decide the
level of volatility for that day. A further effort was made in the last minutes before
the break in communication to decide if the wind direction exhibited a trend to
the left or right, and the amplitude of that trend.

3. The statistical study produced, for any given day, stochastic processes repre-
senting the evolution of wind direction and wind speed over time. In order to carry
out numerical computations, the model had to be discretized. Since the position of
the boat is essentially a point in the plane, a discretization of the race area was also
needed. This discretization had to be compatible with key features of sailboat mo-
tion, and fine enough to capture the essential behaviors. In addition, the navigator
recommends the bearing that the boat is to follow, so the action space is also con-
tinuous, but the model only allowed for a small number of relevant choices. Since
the wind direction is measured with a precision of a few degrees, the wind direction
was modeled by a discrete-time Markov chain for which each step represented a
transition in wind direction and speed over a thirty second time-interval.

4. With the model in hand, offline computations could determine the optimal
action for every possible position of the boat on the race field, and every possible
wind direction and wind speed. This provided a database that could be used
onboard the boat in real time. The onboard computer system could feed in real
time wind data, and the model would provide the navigator with a recommendation
on the optimal action to be taken. It would also quantify the advantage of using
this action relative to other actions, indicate how far ahead one boat is relative to
the other, and give advance notice of course changes expected in the near future.
These results are reported in [1].

5. In order to carry out a rigorous mathematical analysis, simpler models of wind
behavior are useful. This was the objective of [3]. The simplest model for the
evolution of wind angle is a two-state continuous time Markov chain. This already
leads to a complex free-boundary problem, in which the value function can be
written as the solution to a system of hyperbolic partial differential equations with
free boundaries, from which many features of the optimal strategy can be obtained.
A second natural model is when the wind direction evolves as a Brownian motion
on a circle. In this case, the value function solves a system of parabolic partial
differential equations with free boundaries. In both cases, the principle of smooth
fit can be used to help determine the free boundaries and properties of the value
function. This research is reported in [3].
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Average-cost Markov decision processes
with weakly continuous transition probabilities
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This talk presents general sufficient conditions for the existence of stationary
optimal policies for discounted and average-reward Markov Decision Process with
Borel state sets and with weakly continuous transition probabilities. The results
for average costs per unit time extend Scäl’s [10] sufficient conditions for the ex-
istence of stationary optimal policies to problems with noncompact actions sets.
For setwise continuous transition probabilities, similar results were established in
Scäl [10] for compact action sets and extended in Hernández-Lerma [5] to general
action sets. This talk is based on Feinber, Kasyanov and Zadoianchuk [2].

Consider a discrete-time MDP (X,Y,Φ, q, u) with a state space X, an action
space Y, one-step costs u, and transition pobabilities q. The terminology is the
same as in [2, 4] and references therein. Assume that X and Y are Borel subsets
of Polish (complete separable metric) spaces. For a topological space U we denote
by B(U) its Borel σ-field. For all x ∈ X a nonempty Borel subset Φ(x) of Y
represents the set of actions available at x. Assume also that GrX(Φ) = {(x, y) :
x ∈ X, y ∈ Φ(x)} is a measurable subset of X × Y, that is, GrX(Φ) ∈ B(X × Y),
where B(X×Y) = B(X)⊗B(Y); and there exists a measurable mapping φ : X→ Y
such that φ(x) ∈ Φ(x) for all x ∈ X. The one step cost, u(x, y) ≤ +∞, for choosing
an action y ∈ Φ(x) in a state x ∈ X, is a bounded below measurable function on
GrX(Φ). Let q(B|x, y) be the transition kernel representing the probability that
the next state is in B ∈ B(X), given that the action y is chosen in the state x. This
means that q(·|x, y) is a probability measure on (X,B(X)) for all (x, y) ∈ GrX(Φ);
and q(B|·, ·) is a Borel function on (GrX(Φ),B(GrX(Φ))) for all B ∈ B(X).

Let GrZ(Φ) = {(x, y) ∈ Z × Y : y ∈ Φ(x)}, where Z ⊆ X. For a topological
space U, we denote by K(U) the family of all nonempty compact subsets of U.

For an R-valued function f , defined on a nonempty subset U of a topological
space U, consider the level sets Df (λ;U) = {y ∈ U : f(y) ≤ λ}, λ ∈ R. We recall
that a function f is lower semi-continuous (l.s.c.) on U if all the level sets Df (λ;U)
are closed, and a function f is inf-compact on U (lower semi-compact cf. [12]) if
all these sets are compact.

Definition 1. A function u : X × Y → R is called K-inf-compact on GrX(Φ),
if for every K ∈ K(X) this function is inf-compact on GrK(Φ).

We set Φ#(x) = {y ∈ Φ(x) : v(x) = u(x, y)}. The first statement of the follow-
ing theorem extends the well-known Berge’s theorem of the minimum [1, Theorem
2, p. 116] or [7, Proposition 3.3, p. 83] to noncompact image (or decision) sets.
The proofs and additional details can be found in [3].
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Theorem 1. If the function u : X × Y → R is K-inf-compact on GrX(Φ),
then the function v : X → R is l.s.c. If moreover u is a continuous function on
GrX(Φ) and Φ : X → 2Y \ ∅ is l.s.c., then the function v is continuous on X and
the solution multifunction Φ# : X → K(Y) has a closed graph. Additionally, if Φ
is upper semi-continuous (u.s.c.), then Φ# is u.s.c.

The following lemma provides a useful criterium for K-inf-compactness of u
on GrX(Φ), when the spaces X and Y are metrizable. In this form the K-inf-
compactness assumption is introduced in Feinberg, Kasyanov and Zadoianchuk [2]
as Assumption (W∗)(ii).

Lemma 1. Let X and Y be metrizable spaces. Then u is K-inf-compact on
GrX(Φ) if and only if the following two conditions hold: (i) u is l.s.c. on GrX(Φ);
(ii) if a sequence {xn}n≥1 with values in X converges and its limit x belongs to X
then any sequence {yn}n≥1 with yn ∈ Φ(xn), n ≥ 1, satisfying the condition that
the sequence {u(xn, yn)}n≥1 is bounded above, has a limit point y ∈ Φ(x).

We also suppose the following assumption that implies the existence of station-
ary optimal policies for discounted MDPs.

Assumption (W∗). (i) u is bounded below and K-inf-compact on GrX(Φ); (ii)
the transition probability q(·|x, y) is weakly continuous in (x, y) ∈ GrX(Φ).

Weak continuity of q in (x, y) means that
∫
X f(z)q(dz|xk, yk)→

∫
X f(z)q(dz|x, y),

k → +∞, for any sequence {(xk, yk), k ≥ 1} converging to (x, y), where (xk, yk),
(x, y) ∈ GrX(Φ), and for any bounded continuous function f : X→ R.

Denote the class of all l.s.c. and bounded below functions ϕ : X → R with
domϕ := {x ∈ X : ϕ(x) < +∞} 6= ∅ by L(X). Let F be a family of Borel
mappings φ : X→ Y such that φ(x) ∈ Φ(x) for all x ∈ X.

An important consequence of Assumption (W∗) is that it implies that F con-
tains suitable “minimizers”. The following lemma is useful for establishing continu-
ity properties of the value functions; for later relevant results see Feinberg et al. [2].
The proof of this lemma follows from Theorem 1 and from the Arsenin-Kunugui
theorem (Kechris [8, p. 297]).

Lemma 2. If Assumption (W∗) holds and u ∈ L(X), then the function (x, y)→
u(x, y) +

∫
X u(z)q(dz|x, y) is K-inf-compact on GrX(Φ) and the nonempty sets

Φ∗(x) =

{
y ∈ Φ(x) : u∗(x) = u(x, y) +

∫
X
u(z)q(dz|x, y)

}
, x ∈ X, (1)

satisfy the following properties: (a) GrX(Φ∗) is a Borel subset of X × Y; (b) if
u∗(x) = +∞, then Φ∗(x) = Φ(x), and, if u∗(x) < +∞, then Φ∗(x) is compact.

As usual a policy is a sequence π = {πn}n=0,1,... of decision rules (cf. [2, 4]
and references therein), where for each n = 0, 1, ... πn(·|hn) is a conditional prob-
ability on (Y;B(Y)), given the history hn = (x0, y0, x1, y1, ..., yn−1, xn), satisfying
πn(Φ(xn)|hn) = 1. The class of all policies is denoted by Π. Moreover, π is called
nonrandomized, if each probability measure πn(·|hn) is concentrated at one point.
A nonrandomized policy is called Markov, if all of the decisions depend on the cur-
rent state and time only. A Markov policy is called stationary, if all the decisions
depend on the current state only. Thus, a Markov policy π is defined by a sequence
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φ0, φ1, . . . of Borel mappings φn ∈ F. A stationary policy π is defined by a Borel
mapping φ ∈ F.

For a policy π, given initial state x0 = x ∈ X, for a finite horizon N ≥ 0 let us

define the expected total discounted costs vπN,α := Eπx
N−1∑
n=0

αnu(xn, yn), x ∈ X, where

α ≥ 0 is the discount factor and vπ0,α(x) = 0. When N = ∞ and α ∈ [0, 1), vπN,α
defines an infinite horizon expected total discounted cost denoted by vπα(x). The
average cost per unit time is defined as wπ(x) := lim sup

N→+∞

1
N v

π
N,1(x), x ∈ X. For any

function 4π(x), including 4π(x) = vπN,α(x), 4π(x) = vπα(x), and 4π(x) = wπ(x),
define the optimal cost 4(x) := inf

π∈Π
4π(x), x ∈ X. A policy π is called optimal for

the respective criterion, if 4π(x) = 4(x) for all x ∈ X. For 4π = vπn,α, the optimal
policy is called n-horizon discount-optimal ; for 4π = vπα, it is called discount-
optimal ; for 4π = wπ, it is called average-cost optimal [2, 4, 5, 6, 10]. These
definitions of optimality are standard.

Assumption (B). (a) w∗ := inf
x∈X

w(x) <∞, (b) lim inf
α↑1

uα(x) <∞ ∀x ∈ X.

Assumption (B)(a) is equivalent to the existence of x ∈ X and π ∈ Π with
wπ(x) <∞. If Assumption (B)(a) does not hold then the problem is trivial, because
w(x) =∞ for all x ∈ X and any policy π is average-cost optimal.

To state the main result we also need the following notation [10]: for α ∈ [0, 1):
mα = inf

x∈X
vα(x), uα(x) = vα(x)−mα, w = lim inf

α↑1
(1−α)mα, w = lim sup

α↑1
(1−α)mα.

Observe that uα(x) ≥ 0 for all x ∈ X. Schäl [10, Lemma 1.2] and Assumption (B)(a)
implies 0 ≤ w ≤ w ≤ w∗ < +∞. According to Schäl [10, Proposition 1.3], under
Assumption (B)(a), if there exists a measurable function g : X → [0,+∞) and a
stationary policy φ such that w + g(x) ≥ u(x, φ(x)) +

∫
X g(z)q(dz|x, φ(x)), x ∈ X,

then φ is average-cost optimal and w(x) = w∗ = w = w for all x ∈ X. Here we need
a different form of such a statement.

Theorem 2. Let Assumption (B)(a) holds. If there exists a measurable func-
tion g : X→ [0,+∞) and a stationary policy φ such that

w + g(x) ≥ u(x, φ(x)) +

∫
X
g(z)q(dz|x, φ(x)), x ∈ X, (2)

then φ is average-cost optimal and

w(x) = wφ(x) = lim sup
α↑1

(1− α)vα(x) = w = w∗, x ∈ X. (3)

Assumption (W∗) and “boundedness” Assumption (B) on the function uα, which
is weaker than the boundedness Assumption (B) introduced by Schäl [10], lead
to the validity of stationary average-cost optimal inequalities and the existence of
stationary policies.

Let us set Φ∗(x) :=
{
y ∈ Φ(x) : w + u(x) ≥ u(x, y) +

∫
X u(z)q(dz|x, y)

}
, u(x) :=

lim inf
α↑1, z→x

uα(z), x ∈ X, and let Φ∗(x), x ∈ X, be the sets defined in (1) for this func-

tion u; Φ∗(x) ⊆ Φ∗(x).
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Theorem 3. Suppose Assumptions (W∗) and (B) hold. There exist a sta-
tionary policy φ satisfying (2). Thus, equalities (3) hold for this policy φ. Further-
more, the following statements hold: (a) the function u : X → R+ is l.s.c.; (b)
the nonempty sets Φ∗(x), x ∈ X, satisfy the following properties: (b1) the graph
GrX(Φ∗) is a Borel subset of X×Y; (b2) for each x ∈ X the set Φ∗(x) is compact; (c)
a stationary policy φ is optimal for average costs and satisfies (2), if φ(x) ∈ Φ∗(x)
for all x ∈ X; (d) there exists a stationary policy φ with φ(x) ∈ Φ∗(x) ⊆ Φ∗(x) for
all x ∈ X; (e) if, in addition, u is inf-compact on GrX(Φ), then the function u is
inf-compact.
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Equilibrium stochastic behaviors in repeated games
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1. Theory of repeated games essentially motivated by studies on biological adap-
tation and economic behavior concentrates on analyses of long-term dynamics in
societies of repeatedly interacting agents (players), which follow their individual
boundedly rational behavior strategies (see, e.g., [1] – [6]). If the players are al-
lowed to choose their boundedly rational behavior strategies within given sets,
their mutually acceptable choices are naturally associated with the behavior strate-
gies forming a game-theoretic equilibrium with respect to the players’ individual
long-term performance criteria. Long-term equilibria in repeated games with non-
specified deterministic behavior strategies were defined in [7].

In this paper, we focus on infinite repeated bimatrics games with non-specified
stochastic behavior starategies, in which the expectations of the players’ benefits
averaged over the game rounds (the players’ expected avaraged benefits) serve as
the players’ long-term performance criteria.

First, we provide conditions sufficient for a (Nash) equilibrium pair of the play-
ers’ behavior strategies to exist within given sets of the players’ admissible behavior
strategies; the conditions require in particular that all the players’ admissible be-
havior strategies are strictly randomized, and the sets of the players’ admissible
behavior strategies satisfy an appropriate convexity assumption.

Next, we consider a particular infinite repeated 2× 2-bimatrix game with non-
specified behaviour strategies. We depart from coupling the players’ particular,
’traditional’ deterministic boundedly rational behavior strategies – the ’best reply’
ones. Then we allow the players to choose their stochastic behavior strategies in
’neigborhoods’ of the ’traditional’ ones and characterize the equilibrium behavior
strategies. In particular, we find that the equilibrium behavior strategies differ
from the ’traditional’ deterministic ones and have necessarily non-trivial stochastic
components.

The paper incorporates results of [8] – [10].

2. We start off with a bimatrix game given by benefit matrices A = (aij)i∈X1,j∈X2

and B = (bij)i∈X1,j∈X2 where X1 = {1, . . . , n}, X2 = {1, . . . ,m} with some natural
n and m; here the row index, i ∈ X1, and column index, j ∈ X2, stand for pure
strategies of player 1 and player 2, respectively; and aij and bij denote, respectively,
the benefits player 1 and player 2 receive provided they use their pure strategies i
and j, respectively. As usual, we understand mixed strategies of players 1 and 2 as
probability measures on the sets of their pure strategies, X1 and X2, respectively.

We define behavior strategies of player 1 and player 2 as arbitrary maps of
X1×X2 into the sets of all mixed strategies of players 1 and 2, respectively. Given

Author’s email: kryazhim@iiasa.ac.at
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an initial pair of the players’ pure strategies, (i0, j0) ∈ X1 × X2, every behavior
strategy of player 1, p : (i, j) 7→ pij , and every behavior strategy of player 2,
q : (i, j) 7→ qij , determine an infinite repeated game; the latter is defined as the
infinite discrete-time Markov process on X1 ×X2, with times (also called rounds)
0, 1, . . ., the initial state (i0, j0) and the transition probability (i, j) 7→ pij × qij .

In the infinite repeated game corresponding to the players’ behavior strate-
gies p and q, the expected average benefits of players 1 and 2 on round k ≥ 1
are, respectively, the expectations of the random variables ((i0, j0), (i1, j1), . . .) 7→
(ai1j1 + . . .+aikjk)/k and ((i0, j0), (i1, j1), . . .) 7→ (bi1j1 + . . .+ bikjk)/k on the prob-
ability space of the repeated game’s trajectories ((i0, j0), (i1, j1), . . .). Using prop-
erties of finite-state Markov processes (see [1]), one can show that the expected
average benefits of players 1 and 2 on round k converge to some limits, which we
denote, respectively, J1(p, q) and J2(p, q), as k →∞; J1(p, q) and J2(p, q) represent
the expected average benefits of, respectively, players 1 and 2 in the infinite repeated
game corresponding to the players’ behavior strategies p and q.

Let players 1 and 2 be allowed to choose their behavior strategies within given
sets of admissible behavior strategies, S1 and S2, respectively. In this situation
each player is interested in choosing his/her admissible behavior strategy so as to
maximize his/her expected average benefit. A game-theoretic interpretation of that
is a behavior game, in which the actions (strategies) of players 1 and 2, p and q,
vary within S1 and S2, respectively, and the benefit functions for players 1 and 2
are (p, q) 7→ J1(p, q) and (p, q) 7→ J2(p, q), respectively.

3. Consider the issue of the existence of a Nash equilibrium in the behavior game.
Following a standard game-theoretical definition, we call a pair (p∗, q∗) ∈ S1 × S2

to be a Nash equilibrium (in the behavior game) if p∗ maximizes p 7→ J1(p, q∗) on
S1 and q∗ maximizes q 7→ J2(p∗, q) on S2.

Let us give several definitions. We shall say that S1 (respectively, S2) is strictly
randomized if every p ∈ S1 (respectively, every q ∈ S2) takes values in the set of all
strictly mixed strategies of player 1 (respectively, player 2).

We shall say that S1 (respectively, S2) is parallepipedally convex if for every
p(1), p(2) ∈ P (respectively, q(1), q(2) ∈ Q) and every family (λij)(i,j)∈X1×X2

in [0, 1]

the map (i, j) 7→ λijp
(1)
ij + (1−λij)p(2)

ij (respectively, (i, j) 7→ λijq
(1)
ij + (1−λij)q(2)

ij )
lies in P (respectively, in Q).

We shall say that S1 (respectively, S2) is closed if Π(i,j)∈X1×X2
{pij : p ∈ P} is

closed in (Rn)nm (respectively, Π(i,j)∈X1×X2
{qij : q ∈ Q}) is closed in (Rm)nm).

Our existence theorem reads as follows.

Theorem 1. Let S1 and S2 be strictly randomized, parallelepipedally convex
and closed. Then the behavior game has a Nash equilibrium.

4. Consider a situation where players 1 and 2 dominated by historically justified
’traditional’ behavior paradigms explore if small ’innovations’ in their ’traditional’
behaviors can improve their performance in the long run.

Let each player have two pure strategies in the original bimatrix game, i.e., X1 =
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X2 = {1, 2}, and the latter bimatrix game have the single mixed equilibrium; then,
with no loss in generality (see [12]), we set a11 > a21, a22 > a12, b12 > b11, b21 >
b22. Let the players’ ’traditional’ behavior be ’reply best to the opponent’s latest
action’. Therefore, traditionally, in each round each player chooses his/her pure
strategy that brings him/her the maximal benefit provided the other player repeats
his/her pure strategy used in the previous round. For player 1, that behavior is
easily formalized as the deterministic behavior strategy p0 such that p0

i1 = (1, 0),
p0
i2 = (0, 1) (i = 1, 2); and for player 2 as the deterministic behavior strategy q0 such

that q0
1j = (0, 1), q0

2j = (1, 0) (j = 1, 2). We call p0 and q0 the best reply strategies
of players 1 and 2, respectively. The infinite repeated game corresponding to the
players’ best reply strategies will be called the best reply repeated game.

Now let us allow each player to slightly deviate from his/her ’traditional’ be-
havior, namely, to give a small probability for choosing, in each round, his pure
strategy that does not reply best to the opponent’s pure strategy realized in the
previous round. We call a player’s behavior strategy that describes such type of be-
havior the player’s ε-best reply strategy. More specifically, given a small ε > 0, we
define the ε-best reply strategy of player 1, p, by pi1 = (1− ε1, ε1), pi2 = (ε2, 1− ε2)
(i = 1, 2) with arbitrary nonnegative ε1, ε2 ≤ ε; and we define the ε-best reply
strategy of player 2, q, by q1j = (ε1, 1 − ε1), q2j = (1 − ε2, ε2) (j = 1, 2) with
arbitrary nonnegative ε1, ε2 ≤ ε.

Let the players’ admissible behavior strategies be his/her ε-best reply strategies;
in this way we define S1 and S2 – see section 2. We call the above defined behavior
game the 2× 2 ε-best reply one.

Note that S1 and S2 include the deterministic best reply strategies; therefore,
S1 and S2 are not strictly randomized (see section 3). Consequently, for the 2× 2
ε0-best reply behavior game, the conditions sufficient for the existence of a Nash
equilibrium, given in Theorem 1, do not hold. The next theorem states the existence
and structure of the Nash equilibrium in the 2× 2 ε0-best reply behavior game.

Theorem 2. Let a12 6= a21, b11 6= b22 and ε be sufficiently small. Then the
following statements hold true:

(i) the 2×2 ε-best reply behavior game has the single Nash equilibrium (p∗, q∗);

(ii) p∗i1 = (1, 0), p∗i2 = (ε, 1 − ε) if a12 > a21, and p∗i1 = (1 − ε, ε), p∗i2 = (0, 1)
(i = 1, 2) if a12 < a21 (i = 1, 2);

(iii) q∗1j = (ε, 1 − ε), q∗2j = (1, 0) if b11 > b22, and q∗1j = (0, 1), q∗2j = (1 − ε, ε)
if b11 < b22 (j = 1, 2).

Thus, the equilibrium behavior strategies differ from the ’traditional’ determin-
istic ones and have necessarily non-trivial stochastic components. A substantial
interpretation can be the following: as soon as the players realize that they are al-
lowed to introduce stochastic perturbations in their ’traditional’ deterministic best
reply behaviors, they get a motivation to change their ’traditional’ deterministic
behaviors to the equilibrium stochastic ones that are more favorable for both of
them.
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From sequential analysis to optimal stopping – revisited

Hans Rudolf Lerche
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1. The talk will cover three topics:
1) Sequential testing and change point detection

2) Optimal stopping of diffusions using harmonic functions

3) Determination of saddle points of stopping games
We give two examples which describe our viewpoint. Starting from the classical

Wald sequential probability ratio test we elaborate a structure, which is present in
many Bayes testing problems.

2. At first we consider the problem of testing the sign of the drift of Brownian
motion W for the simple hypothesis H0: −θ versus H1: +θ with θ > 0. We
assume 0−1 loss and observation cost c per unit time. The Bayes risk for the prior
1
2δ−θ + 1

2δθ is then defined as

R(T, δ) :=
1

2
(P−θ[H0 rejected (δ)] + cE−θT ) +

1

2
(Pθ[H1 rejected (δ)] + cEθT ) .

The goal is to find (T ∗, δ∗) which minimize this risk. Let δ∗T denote the decision
rule, which rejects H0 when WT > 0. Then R(T, δ∗T ) ≤ R(T, δ) holds for all decision
rules δ and stopping times T . Then one can show

R(T, δ∗T ) =

∫
h(θ|WT |)dQ, (∗)

where h(x) =
[
e−2x/(1 + e−2x)

]
+ c

θ2
x(1− e−2x)/(1 + e−2x) and Q = 1

2P−θ + 1
2Pθ.

For x > 0 the function h is convex and has a minimum in b∗(c). Thus R(T, δ) ≥
h(b∗(c)). Let T ∗ = inf{t > 0 | θ|W (t)| ≥ b∗(c)} denote the stopping time, which
stops in the minimum of h. Then (T ∗, δ∗T ) minimizes the Bayes risk (∗).

The structure given in (∗) is also present when testing composite hypotheses,
for certain change-point detection problems and for other testing problems with
composite hypotheses. In the case of discrete observations one cannot stop in the
minimum with probability 1 and one has to consider overshoot corrections.

3. The second example discusses a classical stopping problem: Let W denote Brow-
nian motion with M0 = 1. Then

Ex0

(
(T + 1)−βg

(
XT√
T + 1

))
= max!

is to maximize over all stopping times. Let H(x) =
∫∞

0 eux−u
2/2u2β−1du with β > 0

and assume that there exists a unique point x∗ with

sup
x∈R

g(x)

H(x)
=

g(x∗)

H(x∗)
= C∗ and 0 < C∗ <∞.
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Then Mt = (t+ 1)−βH
(

Xt√
t+1

)
/H(x0) is a positive martingale with starting value

1 and further

Ex0

(
(T + 1)−βg

(
XT√
T + 1

))
= H(xo)Ex0

g
(

XT√
T+1

)
H
(

XT√
T+1

)MT ≤ H0(x0)C∗.

Let T ∗ = inf{t > 0 | Xt√
t+1

= x∗}, then if x0 < x∗ it holds Px0(T ∗ < ∞) = 1 and

EMT ∗ = 1. Thus T ∗ is optimal.
For the special case: h(x) = x, x0 = 0, and β = 1

2 one has

E(XT /(T + 1)) = max!

Then x∗ is the solution of x = (1 − x2)
∫∞

0 e−ux−u
2/2du, a result once derived by

L. Shepp.
In general, let X denote a diffusion process and consider the problem to solve

V (x) = sup
τ
Exe

−rτg(Xτ ),

where x denote the starting point of X.
We suggest to find a positive function h such that Mt = e−rth(Xt) is a positive

local martingale and supx
g
h(x) = C∗ <∞. Then

Exe
−rτg(Xτ ) = Ex

(
e−rτh(Xτ )

g(Xτ )

h(Xτ )

)
≤ C∗Exe

−rτh(Xτ )

≤ C∗h(x).

If we can find a stopping time τ∗ with g
h(Xτ∗) = C∗ and Ex(e−rτ

∗
h(Xτ∗)) =

h(x), then the inequalities become equalities and the optimal stopping problem has
as solution V (x) = C∗h(x).

We shall give several examples of this method and shall characterize with it the
optimal stopping set {V = g} in a more concrete way.

4. In the third part we consider stopping games, which can be interpreted as op-
tions in the sense of Kifer. We extend the approach described above to give suffi-
cient conditions for Nash-equilibria of such games. This extension uses appropriate
harmonic functions which are neither convex nor concave.
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Singular control and optimal stopping of SPDEs,
and backward SPDEs with reflection

Bernt Øksendal1,2 Agnès Sulem3 Tusheng Zhang4,1

1 Center of Mathematics for Applications (CMA), University of Oslo, Norway
2 Norwegian School of Economics and Business Administration (NHH), Bergen, Norway

3 INRIA - Roquencourt, Paris, France
4 School of Mathematics, University of Manchester, Manchester, UK

1. Let Bt, t ≥ 0 be an m-dimensional Brownian motion on a filtered probability
space (Ω,F ,Ft, P ). Let D be a bounded smooth domain in Rd. Fix T > 0 and let
φ(ω, x) be an FT -measurable H = L2(D)-valued random variable. Let

g : [0, T ]×D × R× Rm → R

be a given measurable mapping and L(t, x) : [0, T ] × D → R a given continu-
ous function. Consider the problem to find Ft-adapted random fields u(t, x) ∈
R, Z(t, x) ∈ Rm, η(t, x) ∈ R+ left-continuous and nondecreasing w.r.t. t, such that

du(t, x) = −Au(t, x)dt− g(t, x, u(t, x), Z(t, x))dt+ Z(t, x)dBt

−η(dt, x); (t, x) ∈ (0, T )×D, (1)

u(t, x) ≥ L(t, x); (t, x) ∈ (0, T )×D,∫ T

0

∫
D

(u(t, x)− L(t, x))η(dt, x)dx = 0; (t, x) ∈ (0, T )×D,

u(T, x) = φ(x); x ∈ D, a.s. (2)

where A is a second order linear partial differential operator. This is a backward
stochastic partial differential equation (BSPDE) with reflection, an RBSPDE for
short.

It is now well-known that the maximum principle method for solving a classical
stochastic control problem for stochastic partial differential equations involves a
BSPDE for the adjoint processes p(t, x), q(t, x). See [8].

The purpose of this paper is threefold:
(i) We study a class of singular control problems for SPDEs and prove a maximum
principle for the solution of such problems. This maximum principle leads to a
reflected backward stochastic partial differential equation.
(ii) We study backward stochastic partial differential equations (BSPDEs) with
reflection. As an illustration of our results we apply them to a singular optimal
harvesting problem from a population whose density is modeled by a stochastic
reaction-diffusion equation.
(iii) We establish a relation between RBSPDEs and optimal stopping of SPDEs,
and we apply this to solve a risk minimizing stopping problem.

Speaker: Bernt Øksendal, e-mail: oksendal@math.uio.no
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Backward SDEs with partially nonpositive jumps
and Hamilton-Jacobi-Bellman IPDEs

Huyên Pham

University Paris Diderot, France

We consider a class of BSDEs where the jumps component of the solution is
subject to a partial nonpositive constraint. After proving existence and uniqueness
of a minimal solution under mild assumptions, we give a dual representation of this
solution as an essential supremum over a family of equivalent change of probability
measures. We then show how minimal solutions to our BSDE class provide actually
a new probabilistic representation for integro-partial differential equations (IPDEs)
of Hamilton-Jacobi-Bellman (HJB) type, when dealing with a suitable Markovian
framework. Joint work with I. Kharroubi.

Author’s email: pham@math.univ-paris-diderot.fr
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Extremal martingales.
Stochastic optimization and optimal stopping

L. C. G. Rogers

Statistical Laboratory, University of Cambridge, England

Availability of market prices of call options of all strikes determines the risk-
neutral distribution of the underlying asset at the terminal time. Finding the
maximum and minimum price of various derivatives whose prices depend on the
maximal value and the terminal value (such as barrier options) has been studied
in the last 15 years or so by Hobson, Cox, Obloj, Brown, and others, and some
quite complete results are known. This talk takes as its starting point some older
work [1] characterizing the possible joint laws of the maximum and terminal value
of a martingale; this converts the problem of finding the extremal martingale into
a linear programming problem, an observation which allows effective numerical
solution. I hope to be able to talk about more recent work with Moritz Duemb-
gen characterizing the possible joint distributions of the maximum, minimum and
terminal value of a continuous martingale.
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Multilevel primal and dual approaches
for pricing American options

Denis Belomestny1 Marcel Ladkau2 John Schoenmakers2

1Duisburg-Essen University, Duisburg, Germany
2Weierstrass Institute, Berlin, Germany

1. Let (Zj)j≥0 be a nonnegative adapted process on a filtered probability space
(Ω,F = (Fj)j≥0,P) representing the discounted payoff of an American option,
so that the holder of the option receives Zj if the option is exercised at time
j ∈ {0, . . . , T} with T ∈ N+. The pricing of American options can be formulated
as a primal-dual problem. The primal representation corresponds to the following
optimal stopping problems

Y ∗j := max
τ∈T [j,...,T ]

EFj [Zτ ], j = 0, . . . , T,

where T [j, . . . , T ] is the set of F-stopping times taking values in {j, . . . , T}. The

process
(
Y ∗j

)
j≥0

is called the Snell envelope. Y ∗ is a supermartingale satisfying

the Bellman principle

Y ∗j = max
(
Zj ,EFj [Y

∗
j+1]

)
, 0 ≤ j < T, Y ∗T = ZT .

An exercise policy is a family of stopping times (τj)j=0,...,T such that τj ∈ T [j, . . . , T ].
During the nineties the primal approach was the only method available. Some

years later a quite different “dual” approach has been discovered by [8] and [5].
The next theorem summarizes their results.

Theorem 1. Let M denote the space of adapted martingales, then we have the
following dual representation for the value process Y ∗j

Y ∗j = inf
π∈M

EFj

[
max

s∈{j,...,T}
(Zs − πs + πj)

]
= max

s∈{j,...,T}
(Zs − π∗s + π∗j ) a.s.,

where
Y ∗j = Y ∗0 + π∗j −A∗j (1)

is the (unique) Doob decomposition of the supermartingale Y ∗j . That is, π∗ is a
martingale and A∗ is an increasing process with π0 = A0 = 0 such that (1) holds.

2. Assume that we are given a stopping family (τj) that is consistent, i.e.

τj > j ⇒ τj = τj+1, j = 0, . . . , T − 1.

Speaker: John Schoenmakers, e-mail: schoenma@wias-berlin.de
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The stopping policy defines a lower bound for Y ∗ via

Yj = EFj [Zτj ], j = 0, . . . , T.

Consider now a new family (τ̂j)j=0,...,T defined by

τ̂j := inf
{
k : j ≤ k < T, Zk ≥ EFk [Zτk+1

]
}
∧ T. (2)

The basic idea behind (2) goes back to [6] in fact. For more general versions of
policy iteration and their analysis, see [7]. Next, we introduce the (Fj)-martingale

πj =

j∑
k=1

(
EFk [Zτk ]− EFk−1

[Zτk ]
)
, j = 0, . . . , T, (3)

and then consider,

Ỹj := EFj

[
max

k=j,...,T
(Zk − πk + πj)

]
,

along with

Ŷj := EFj [Zτ̂j ], j = 0, . . . , T.

The following theorem states that Ŷ is an improvement of Y and that the Snell
envelope process Y ∗j lies between Ŷj and Ỹj with probability 1.

Theorem 2. It holds

Yj ≤ Ŷj ≤ Y ∗j ≤ Ỹj , j = 0, . . . , T a.s.

3. The main issue in the Monte Carlo construction of Ŷ and Ỹ in a Markovian
environment is the estimation of the conditional expectations in (2) and (3). We
thus assume that the cash-flow Zj is of the form Zj = Zj(Xj) for some underlying
(possibly high-dimensional) Markovian process X . A canonical approach is the
use of sub simulations. In this respect we consider an enlarged probability space
(Ω,F′,P), where F′ = (F ′j)j=0,...,T and Fj ⊂ F ′j for each j. On the enlarged space

we consider F ′j measurable estimations Cj,M of Cj = EFj
[
Zτj+1

]
as being standard

Monte Carlo estimates based on M sub simulations. More precisely

Cj,M =
1

M

M∑
m=1

Z
τ
(m)
j+1

(X
j,Xj

τ
(m)
j+1

)

where the τ
(m)
j+1 are evaluated on M sub trajectories all starting at time j in Xj .

Obviously, Cj,M is an unbiased estimator for Cj with respect to EFj [·] . We thus
end up with a simulation based versions of (2) and (3) respectively,

τ̂j,M := inf {k : j ≤ k < T, Zk > Ck,M} ∧ T, j = 0, ..., T,
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πj,M :=

j∑
k=1

(Zk − Ck−1,M ) 1{τk=k} +

j∑
k=1

(Ck,M − Ck−1,M ) 1{τk>k}.

Denote
Ŷj,M := EFj [Zτ̂j,M ], j = 0, . . . , T

and

Ỹj,M := EFj

[
max

k=j,...,T
(Zk − πk,M + πj,M )

]
.

Theorem 3. Let us assume that there exist constants B0,j > 0, j = 0, . . . , T − 1,
and α > 0, such that for any δ > 0 and j = 0, . . . , T − 1,

P(|EFj [Zτ̂j+1
]− Zj | ≤ δ) ≤ B0,jδ

α.

Further suppose that there are constants B1 and B2, such that |Zj | < B1 and

VarFj [Zτj+1 ] := EFj [(Zτj+1 − Cj)2] < B2, a.s. (4)

for j = 0, . . . , T − 1. It then holds,

|Ŷ0 − Ŷ0,M | ≤M−
1+α
2 B

T−1∑
k=0

B0,k,

with some constant B depending only on α, B1 and B2. Moreover, if for any δ > 0

P(|EFj [Zτj+1 ]− Zj | ≤ δ) ≤ B0,jδ
α

with some positive constants α and B0,j , j = 0, . . . , T − 1, then

E[(Zτ̂0,M − Zτ̂0)2] ≤M−α/22B2
1B

T−1∑
j=0

B0,j .

Theorem 4. Introduce for Z := maxj=0,...,T (Zj − πj), the random set

Q = {j : Zj − πj = Z} ,

and the FT measurable random variable

Λ := min
j /∈Q

(Z − Zj + πj) ,

with Λ := +∞ if Q = {0, . . . , T}. Obviously Λ > 0 a.s. Further suppose that

E[Λ−ξ] <∞ for some 0 < ξ ≤ 1, and #Q = 1.

It then holds, ∣∣∣Ỹ0 − Ỹ0,M

∣∣∣ ≤ CM− ξ+1
2

for some constant C.
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For a fixed natural number L and a geometric sequence ml = m0κ
l, for some

m0, κ ∈ N, κ ≥ 2, we consider in the spirit of [4] the telescoping sum

ŶmL = Ŷm0 +

L∑
l=1

(
Ŷml − Ŷml−1

)
,

where Ŷm := Ŷ0,m. Next we take a set of natural numbers n : = (n0, . . . , nL)
satisfying n0 > ... > nL ≥ 1, and simulate an initial set of cash-flows{

Z
(j)
τ̂m0

, j = 1, ..., n0

}
,

due to an initial set of trajectories {X0,x,(j)
· , j = 1, ..., n0}, where

Z
(j)
τ̂m0

:= Z
τ̂
(j)
0,m0

(
X

0,x,(j)

τ̂
(j)
0,m0

)
.

Next we simulate independently for each level l = 1, ..., L, a set of pairs{
(Z

(j)
τ̂ml
, Z

(j)
τ̂ml−1

), j = 1, . . . , nl

}
due to a set of trajectories X

0,x,(j)
· , j = 1, ..., nl, to obtain the multilevel estimator

Ŷn,m :=
1

n0

n0∑
j=1

Z
(j)
τ̂m0

+

L∑
l=1

1

nl

nl∑
j=1

(
Z

(j)
τ̂ml
− Z(j)

τ̂ml−1

)
for estimating Ŷ . (5)

4. With the notations of the previous section we define

ỸmL = Ỹm0 +

L∑
l=1

[Ỹml − Ỹml−1
],

where Ỹm := Ỹ0,m. Given a sequence n = (n0, . . . , nL) with 1 ≤ n0 < . . . < nL, we
then simulate for l = 0 an initial set of trajectories{

(Z
(i)
j , π

(i)
j,m0

), i = 1, ..., n0, j = 0, . . . , T,
}

of the two-dimensional vector process (Zj , πj,m0), and then for each level l =
1, . . . , L, independently, a set of trajectories{

(Z
(i)
j , π

(i)
j,ml−1

, π
(i)
j,ml

), i = 1, ..., nl, j = 0, . . . , T
}

of the vector process (Zj , πj,ml−1
, πj,ml). Based on this simulation we consider the

following multilevel estimator:

Ỹn,m :=
1

n0

n0∑
i=1

Z(i)
m0

+

L∑
l=1

1

nl

nl∑
i=1

[Z(i)
ml
−Z(i)

ml−1
] (6)
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with Z(i)
ml := maxj=0,...,T

(
Z

(i)
j − π

(i)
j,ml

)
, i = 1, . . . , nl, l = 0, . . . , L.

5. We now consider the numerical complexity of the multilevel estimators (5) and
(6), for convenience generically denoted by Xn,m. Assume that there are some
positive constants γ, β, µ∞, σ∞ and V∞ such that Var[Xm] ≤ σ2

∞,

|X − E[Xm]| ≤ µ∞m
−γ , m ∈ N and (7)

E[Xml −Xml−1
]2 ≤ V∞m−βl , l = 1, . . . , L. (8)

Theorem 5. Let us assume that 0 < β ≤ 1, γ ≥ 1
2 and ml = m0κ

l for some fixed
κ and m0 ∈ N. Fix some 0 < ε < 1. Let L = L (ε) be the integer part of

γ−1 ln−1 κ ln

[√
2µ∞
mγ

0ε

]
, and nl = n0κ

−l(1+β)/2 with

n0 = n0 (ε) =
2σ2
∞
ε2

+
2V∞
ε2mβ

0

κL(1−β)/2 − 1

κ(1−β)/2 − 1
κ(1−β)/2.

Then the complexity needed to achieve the accuracy ε :=
√

E[(X −Xn,m)2] < ε is

Cn,mML (ε) = O(ε
−2− 1−β

γ ), ε↘ 0, for β < 1,

Cn,mML (ε) = O(ε−2 ln2 ε), ε↘ 0, for β = 1.
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Asymptotically optimal discretization
of hedging strategies with jumps

Mathieu Rosenbaum1 Peter Tankov2

1Université Pierre et Marie Curie, Paris, France
2Université Paris Diderot – Paris 7, Paris, France

1. A basic problem in mathematical finance is to replicate a random claim with
FT -measurable payoff HT with a portfolio involving only the underlying asset Y
and cash. When Y follows a diffusion process of the form

dYt = µ(t, Yt)dt+ σ(t, Yt)dWt, (1)

it is known that under minimal assumptions, a random payoff depending only on
the terminal value of the asset HT = H(YT ) can be replicated with the so-called
delta hedging strategy. However, to implement such a strategy, the hedging port-
folio must be readjusted continuously, which is of course physically impossible and
anyway irrelevant because of the presence of microstructure effects and transaction
costs. For this reason, the optimal strategy is always replaced with a piecewise con-
stant one, leading to a discretization error. The relevant question is then to find
the optimal discretization dates. Of course, it is intuitively clear that readjusting
the portfolio at regular deterministic intervals is not optimal. However, the optimal
strategy for fixed n is very difficult to compute.

Fukasawa [1] simplifies this problem by assuming that the hedging portfolio is
readjusted at high frequency. The performance of different discretization strate-
gies can then be compared based on their asymptotic behavior as the number of
readjustment dates n tends to infinity, rather than the performance for fixed n.
Consider a discretization rule : a sequence of discretization strategies

0 = Tn0 < Tn1 < · · · < Tnj < . . . ,

with supj |Tnj+1 − Tnj | → 0 as n → ∞ and let Nn
T := max{j ≥ 0;Tnj ≤ T} be the

total number of readjustment dates on the interval [0, T ] for given n. To compare
different discretization rules in terms of their asymptotic behavior, Fukasawa [1]
uses the criterion

lim
n→∞

E[Nn
T ]E[〈En〉T ], (2)

where 〈En〉 is the quadratic variation of the semimartingale (Ent )t≥0. He finds that
when the underlying asset is a continuous semimartingale, the functional (2) admits
a nonzero lower bound over all discretization rules, and exhibits a specific explicit
rule based on hitting times which attains this lower bound and is therefore called
asymptotically efficient.

Speaker: Peter Tankov, e-mail: tankov@math.univ-paris-diderot.fr
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While the above approach is quite natural and provides very explicit results, it
fails to take into account important factors of market reality. First, the asymptotic
functional (2) is somewhat ad hoc, and does not reflect any specific model for the
transaction costs. Second, the continuity assumption, especially at relatively high
frequencies, is not realistic.

The objective of our work is therefore two-fold. First, we develop a framework
for characterizing the asymptotic efficiency of discretization strategies which takes
into account the transaction costs. Second, we remove the continuity assumption
in order to understand the effect of the activity of small jumps (often quantified
by the Blumenthal-Getoor index) on the optimal discretization strategies.

2. Our goal is to study and compare different discretization rules for the stochastic
integral ∫ T

0
Xt−dYt,

where X and Y are semimartingales with jumps. More precisely, our principal
assumptions on the processes X and Y are

• The process Y is a F-local martingale, whose predictable quadratic variation
satisfies 〈Y 〉t =

∫ t
0 Asds, where the process (At) is càdlàg and locally bounded.

• The process X is a pure jump semimartingale defined via the stochastic
representation

Xt = X0 +

∫ t

0
bsds+

∫ t

0

∫
|z|≤1

z(M − µ)(ds× dz) +

∫ t

0

∫
|z|>1

zM(ds× dz),

(3)

where M is the jump measure of X and µ is its predictable compensator,
which satisfies additionally µ(dt × dz) = dt × λtKt(z) ν(dz), where λ is a
positive càdlàg process, K is a random function which is in some sense “close
to 1” when z is close to 0 and ν is a Lévy measure satisfying

xαν((x,∞))→ c+ and xαν((−∞,−x))→ c− when x→ 0. (Hα)

for some α ∈ (1, 2) and constants c+ ≥ 0 and c− ≥ 0 with c+ + c− > 0.

A discretization rule is a family of stopping times (T εi )ε>0
i≥0 parameterized by a

nonnegative integer i and a positive real ε, such that for every ε > 0, 0 = T ε0 <
T ε1 < T ε2 < . . ., and sup{i : T εi ≤ T} < ∞. For a fixed discretization rule and a
fixed ε, we denote η(t) = sup{T εi : T εi ≤ t} and NT = sup{i : T εi ≤ T}.

The performance of a discretization rule is measured by the error functional
E(ε) : (0,∞)→ [0,∞) and the cost functional C(ε) : (0,∞)→ [0,∞). We consider
the error functional given by the L2 error

E(ε) := E

[(∫ T

0
(Xt− −Xη(t)−)dYt

)2
]

(4)
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and a family of cost functionals of the form

Cβ(ε) = E

 ∑
i≥1:T εi ≤T

|XT εi
−XT εi−1

|β
 . (5)

The case β = 0 correspond to a fixed cost for each discretization point, and the
case β = 1 corresponds to proportional costs.

In our framework, a discretization strategy will be said to be asymptotically
optimal for a given cost functional if no strategy has (asymptotically, for large
costs) a lower discretization error and a smaller cost.

Motivated by the form of the explicit asymptotically optimal strategy found by
Fukasawa [1] and the readjustment rules used by market practitioners, we consider
discretizations based on the hitting times of the process X. Such a discretization
rule is defined by a pair of positive F-adapted càdlàg processes (at)t≥0 and (at)t≥0.
The discretization dates are then given by

T εi+1 = inf{t > T εi : Xt /∈ (XT εi
− εaT εi , XT εi

+ εaT εi )}.

3. We characterize explicitly the asymptotic behavior of the errors and costs asso-
ciated to our random discretization rules, by showing that, under suitable assump-
tions,

lim
ε→0

ε−2E(ε) = E

[∫ T

0
At
f(at, at)

g(at, at)
dt

]
(6)

lim
ε→0

εα−βCβ(ε) = E

[∫ T

0
λt
uβ(at, at)

g(at, at)
dt

]
, (7)

where, for a, a ∈ (0,∞),

f(a, a) = E

[∫ τ∗

0
(X∗t )2dt

]
, g(a, a) = E[τ∗] and uβ(a, a) = E[|X∗τ∗ |β] <∞.

with τ∗ = inf{t ≥ 0 : X∗t /∈ (−a, a)}, where X∗ is a strictly α-stable process with
Lévy density

ν∗(x) =
c+1x>0 + c−1x<0

|x|1+α
.

The above result allows to prove that we may look for optimal barriers a and
a as minimizers of

min

{
At
f(at, at)

g(at, at)
+ cλt

uβ(at, at)

g(at, at)

}
. (8)

The parameter c may be chosen by the trader depending on the maximum accept-
able cost: the bigger c, the smaller will be the cost of the strategy and, consequently
the bigger its error. The functions f , g and u appearing above must in general be
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computed numerically, however, in the case when the limiting process X∗ is a sym-
metric stable process, which corresponds for example to the CGMY model very
popular in practice, the results are completely explicit, as will be shown in the
next paragraph.

4. Assume that Y is an exponential of a Lévy process: Yt = eZt where Z is a
Lévy process without diffusion part, and whose Lévy measure has a density ν(x)
satisfying ν(x) ∼ c

|x|1+α , x→ 0. Then At = ΣY 2
t with Σ =

∫
(ez − 1)2ν(z)dz. The

quadratic hedging strategy in this case has been given by several authors and is
known to have a Markov structure: Xt = φ(t, Yt) for a deterministic function φ. In
this case we may compute

λt =

(
Yt
∂φ(t, Yt)

∂Y

)α
and therefore

at = c

(
∂φ(t, Yt)

∂Y

) α
2+α−β

Y
α−2

α−β+2

t .

When β = 0 and α→ 2, we find that the optimal size of the rebalancing interval is
proportional to the square root of ∂φ(t,Yt)

∂Y (the gamma), which is consistent with the
results of Fukasawa [1], quoted above. In the general case, we obtain an explicit
representation for the optimal discretization dates, which includes two “tuning”
parameters: the index β which determines the effect of transaction costs (fixed,
proportional, etc.) and the Blumenthal-Getoor index α measuring the activity of
small jumps.
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Sequential Hypothesis Testing and Changepoint Detection:
Past and Future

Alexander G. Tartakovsky

University of Southern California, Los Angeles, CA USA

1. Nearly Optimal Sequential Tests of Composite Hypotheses. Let X1,
X2, . . . be a sequence of independent and identically distributed (iid) observations,
and let pθ(x) be a density (parametrized by a parameter θ) with respect to some
non-degenerate sigma-finite measure µ. In his 1947 book, Wald [9, Section 6] sug-
gested two approaches for modifying the Sequential Probability Ratio Test (SPRT)
to test a simple null hypothesis H0 : θ = θ0 against a composite alternative H1 : θ ∈
Θ1. One method is to replace the likelihood ratio (LR) Λθn =

∏n
k=1[pθ(Xk)/pθ0(Xk)]

by a weighted LR Λ̄n =
∫

Θ1
w(θ)Λθn dθ, using a suitably selected weight function

w(θ) on the hypothesis H1. This leads to the Weighted SPRT (WSPRT) δ̄ = (T̄ , d̄)
with the stopping time T̄ (A0, A1) = inf

{
n ≥ 1 : Λ̄n 6∈ (A0, A1)

}
, 0 < A0 < 1, A1 >

1. The weighted-based tests are also often called mixture-based tests of simply mix-
tures. The other way is to apply the generalized likelihood ratio (GLR) approach
of classical fixed-sample size theory, employing the GLR statistic Λ̂n = supθ∈Θ1

Λθn
in place of the LR Λθn with a priori fixed parameters, which leads to the General-
ized Sequential Likelihood Ratio Test (GSLRT) δ̂ = (T̂ , d̂) with the stopping time

T̂ (A0, A1) = inf
{
n ≥ 1 : Λ̂n 6∈ (A0, A1)

}
.

In a more general case where the null hypothesis is also composite, H0 : θ ∈ Θ0,
Wald [9] proposed to exploit the WSPRT with the weighted LR

Λ̄n =

∫
Θ1
w1(θ)

∏n
k=1 pθ(Xk) dθ∫

Θ0
w0(θ)

∏n
k=1 pθ(Xk) dθ

.

Changing the measures and applying the Wald likelihood ratio identity, we ob-
tain the upper bounds on the average error probabilities: ᾱ0(δ̄) =

∫
Θ0

Pθ(d̄ =

1)w0(θ) dθ ≤ 1/A1, ᾱ1(δ̄) =
∫

Θ1
Pθ(d̄ = 0)w1(θ) dθ ≤ A0. Clearly, for practical

purposes, one would strongly prefer to upper-bound not the average error prob-
abilities, which depend on a particular choice of weights, but rather the maxi-
mal error probabilities of Type I and Type II, i.e., to consider the class of tests
C(α0, α1) = {δ : supθ∈Θ0

Pθ(d = 1) ≤ α0, supθ∈Θ1
Pθ(d = 0) ≤ α1}, α0 + α1 < 1.

However, in general it is not clear how to obtain the upper bounds on maximal
error probabilities of the WSPRT and the GSLRT. In this respect, the tests that
are based on one-stage delayed estimators, for the first time suggested by Robbins
and Siegmund [6, 7] in the context of power one tests in the beginning of seventies,
represent a useful alternative considered below.

More generally, consider the following continuous- or discrete-time scenario with
multiple composite hypotheses. Let (Ω,F ,Ft,Pθ), t ∈ Z+ = {0, 1, . . . } or t ∈

Author’s email: tartakov@usc.edu
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R+ = [0,∞), be a filtered probability space with standard assumptions about
monotonicity and, in the continuous time case t ∈ R+, also right-continuity of
the σ-algebras Ft. The parameter θ = (θ1, . . . , θ`) belongs to a subset Θ̃ of `-
dimensional Euclidean space R`. The sub-σ-algebra Ft = FX

t = σ(Xt
0) of F is

generated by the stochastic process Xt
0 = {X(u), 0 ≤ u ≤ t} observed up to time

t . The hypotheses to be tested are “Hi : θ ∈ Θi”, i = 0, 1, . . . , N (N ≥ 1), where
Θi are disjoint subsets of Θ̃. We will also suppose that there is an indifference zone
Iin ∈ Θ̃ in which there are no constraints on the probabilities of errors imposed. The
indifference zone, where any decision is acceptable, is usually introduced keeping
in mind that the correct action is not critical and often not even possible when the
hypotheses are too close, which is perhaps the case in most, if not all, practical
applications. However, in principle Iin may be an empty set. The probability
measures Pθ and Pθ̃ are assumed to be locally mutually absolutely continuous, i.e.,
the restrictions Ptθ and Pt

θ̃
of these measures to the sub-σ-algebras Ft are equivalent

for all 0 ≤ t <∞ and all θ, θ̃ ∈ Θ̃.
A multihypothesis sequential test δ consists of the pair (T, d), where T is a stop-

ping time with respect to the filtration {Ft}t≥0, and d = dT (XT
0 ) ∈ {0, 1, . . . , N}

is an FT -measurable (terminal) decision rule specifying which hypothesis is to
be accepted once observations have stopped (the hypothesis Hi is accepted if
d = i and rejected if d 6= i, i.e., {d = i} = {T <∞, δ accepts Hi}). The qual-
ity of a sequential test is judged on the basis of its error probabilities and ex-
pected sample sizes (or more generally on the moments of the sample size). Let
αij(δ, θ) = Pθ(d = j)1{θ∈Θi} (i 6= j, i, j = 0, 1, . . . , N) be the probability of ac-
cepting the hypothesis Hj by the test δ when the true value of the parameter
θ is fixed and belongs to the subset Θi. Introduce the class of tests C(||αij ||) ={
δ : supθ∈Θi αij(δ, θ) ≤ αij , i, j = 0, 1, . . . , N, i 6= j

}
for which maximal error prob-

abilities do not exceed the given numbers αij .
While almost all results hold for continuous time too, we will focus only on the

discrete time scenario. Let θ̂n = θ̂n(X1, . . . , Xn) be an estimator of θ. If in density
pθ(Xk) for the kth observation we replace the parameter by the estimate θ̂k−1 built
upon the sample (X1, . . . , Xk−1) that includes k−1 observations, then pθ̂k−1

(Xk) is

still a viable probability density, in contrast to the case of the GLR approach where
pθ̂n(Xk) is not a probability density anymore for k ≤ n. Therefore, the statistic

Λ∗n(θi) =

n∏
k=1

pθ̂k−1
(Xk)

pθi(Xk)
= Λ∗n−1(θi)×

pθ̂n−1
(Xn)

pθi(Xn)
(1)

is a viable likelihood ratio, and it is the nonnegative Pθi-martingale with unit
expectation, since Eθi [Λ

∗
n(θi)|Xn−1

1 ] = Λ∗n−1(θi). Therefore, one can use Wald’s
likelihood ratio identity for finding bounds on error probabilities if Λ∗n(θi) is used
instead of the LR with the true parameter value θ. Because of exactly this very
convenient property as well as of the simple recursive structure (1) the hypothesis
tests based on the adaptive LR’s with one-stage delayed estimators represent a
very attractive alternative to the GLR tests as well to the mixture-based tests. De-
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fine the statistics Λ∗n(Θi) =
∏n
k=1 pθ̂k−1

(Xk)/ supθ∈Θi

∏n
k=1 pθ(Xk), i = 0, 1, . . . , N .

The multihypothesis test, which we will refer to as the Multihypothesis Adaptive
Sequential Likelihood Ratio Test (MASLRT), has the form

stop at the first n ≥ 1 such that for some i Λ∗n(Θj) ≥ Aji for all j 6= i

and accept the (unique) Hi that satisfies these inequalities.
Write α∗ij(θ) = Pθ(d

∗ = j)1{θ∈Θi} for the error probabilities of the MASLRT.
It can be shown that supθ∈Θi α

∗
ij(θ) ≤ 1/Aij , i 6= j, so that Aij = 1/αij implies

δ∗ ∈ C(||αij ||).
For r > 0, the random variable ξn is said to converge P-r-quickly to a constant

C if ELrε <∞ for all ε > 0, where Lε = sup {n : |ξn − C| > ε} (sup∅ = 0).

Write λn(θ, θ̃) = log
dPnθ
dPn

θ̃

=
∑n

k=1 log
pθ(Xk|Xk−1

1 )

pθ̃(Xk|Xk−1
1 )

for the log-likelihood ratio

(LLR) process. Assume that there exist positive and finite numbers I(θ, θ̃) such
that

1

n
λn(θ, θ̃)

Pθ−r−quickly−−−−−−−−−→
n→∞

I(θ, θ̃) for all θ, θ̃ ∈ Θ, θ 6= θ̃. (2)

In addition, we certainly need some conditions on the behavior of the estimate θ̂n
for large n, which should converge to the true value θ in a proper way. To this end,
we require the following condition on the adaptive LLR process:

1

n
log Λ∗n(θ̃)

Pθ−r−quickly−−−−−−−−−→
n→∞

I(θ, θ̃) for all θ, θ̃ ∈ Θ, θ 6= θ̃, (3)

so that the normalized by n LLR tuned to the true parameter value and its adaptive
version converge to the same constants. In certain cases, but not always, conditions
(2) and (3) imply the following conditions

1

n
log Λ∗n(Θi)

Pθ−r−quickly−−−−−−−−−→
n→∞

Ii(θ) for all θ ∈ Θ \Θi, i = 0, 1, . . . , N, (4)

where Ii(θ) = inf θ̃∈Θi
I(θ, θ̃) is assumed to be positive for all i. Let

Ji(θ) = min
0≤j≤N
j 6=i

[Ij(θ)/cji] for θ ∈ Θi, J(θ) = max
0≤i≤N

Ji(θ) for θ ∈ Iin,

where cij = limαmax→0 | logαij |/| logαmax|, αmax = maxi,j αij .
The following theorem establishes uniform asymptotic optimality of the MASLRT

in the general non-iid case with respect to moments of the stopping time distribu-
tion. The proof is based on the technique developed by Tartakovsky [8] for multiple
simple hypotheses.

Theorem 1 (MASLRT asymptotic optimality). Assume that r-quick convergence
conditions (2) and (4) are satisfied. If the thresholds Aij are so selected that
supθ∈Θi α

∗
ij(θ) ≤ αij and logAij ∼ log(1/αij), in particular Aij = 1/αij, then

for m ≤ r as αmax → 0

inf
δ∈C(||αij ||)

EθT
m ∼ Eθ[T

∗]m ∼

{
[| logαmax|/Ji(θ)]m for all θ ∈ Θi and i = 0, 1, . . . , N

[| logαmax|/J(θ)]m for all θ ∈ Iin.
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Consequently, the MASLRT minimizes asymptotically the moments of the sample
size up to order r uniformly in θ ∈ Θ in the class of tests C(||αij ||).

This theorem generalizes previous results of Pavlov [3] and Dragalin and No-
vikov [1] restricted to iid exponential families, and also provides alternative condi-
tions in iid cases that can be often easily checked. Indeed, for a multidimensional
exponential family, conditions (2) are satisfied for all r > 0 with I(θ, θ̃) = Eθλ1(θ, θ̃)
being the Kullback–Leibler information numbers. Also, in many particular cases,
conditions (4) also hold when θ̂n is the maximum likelihood estimator (MLE). For
example, assume that Xn ∼ N (µ, σ2), n = 1, 2, . . . are iid normal random vari-
ables with unknown mean µ and unknown variance σ2 and the hypotheses are
“H0 : µ = 0, σ2 > 0” and “H1 : µ ≥ µ1, σ

2 > 0”, where µ1 is a given positive
number. In this case, N = 1, θ = (µ, σ2) and the variance σ2 is a nuisance param-
eter. It can be verified that if (µ̂n, σ̂

2
n) is the MLE, µ̂n = max{0, n−1

∑n
k=1Xk},

σ̂2
n = n−1

∑n
k=1(Xk − µ̂n)2, then conditions (4) hold for all r > 0 with I1(q) =

1
2 log[1 + (q1 − q)2], 0 ≤ q < q1 and I0(q) = 1

2 log(1 + q2), q ≥ 0, where q = µ/σ
and q1 = µ1/σ. Therefore, by Theorem 1, the ASLRT minimizes (asymptotically)
all positive moments of the sample size.

2. Sequential Changepoint Detection. Assume X1, X2, . . . is a sequence of
independent observations and X1, . . . , Xν have density pθ0(x) while at time ν some-
thing happens and Xν+1, Xν+2, . . . have density pθ(x), θ ∈ Θ, θ0 6∈ Θ. The pre-
change parameter θ0 is known, but the time of change ν ∈ {0, 1, . . . } and the
post-change parameter θ are unknown. Let W (θ) be a weight (mixing prior dis-
tribution) and consider the following mixture-based Shiryaev–Roberts changepoint
detection procedure

TSR(A) = inf

{
n ≥ 1 :

∫
Θ
RθnW (dθ) ≥ A

}
, A > 0,

where Rθn =
∑n

k=1

∏n
i=k

pθ(Xi)
pθ0 (Xk) . We refer to this procedure as the WSR.

Let Eθν denote expectation with respect to the probability measure Pθν when the
changepoint is ν and the post-change parameter is θ and let E∞ denote expectation
when there is no change. Let ARL(T ) = E∞T stand for the average run length

(mean time) to false alarm. Let λθn =
∑n

k=1 log pθ(Xk)
pθ0 (Xk) be the LLR and define

the conditional expected Kullback–Leibler information J θν (T ) := Eθν(λθT − λθν |T >
ν) = IθE

θ
ν(T − ν|T > ν), where Iθ = Eθ0λ

θ
1. Then the maximal Kullback–Leibler

information (over both ν and θ) is

sup
θ∈Θ

sup
ν≥0
J θν (T ) = sup

θ∈Θ

[
Iθ sup

ν≥0
Eθν(T − ν|T > ν)

]
.

If pθ belongs to the `-dimensional exponential family, then the following two
results can be established. First, the WSR procedure that starts off at zero (Rθ0 =
0) is second order asymptotically optimal for any mixing distribution W (θ) with
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continuous density in the class C(γ) = {T : ARL(T ) ≥ γ}:

sup
θ∈Θ,ν≥0

J θν (TSR) = inf
T∈C(γ)

sup
θ∈Θ,ν≥0

J θν (T ) +O(1) as γ →∞,

where O(1) is bounded as γ → ∞. More importantly, if the WSR procedure
starts off at a specially designed point and the mixing distribution W = W ∗ is
selected also in a special way depending on the average overshoot in the one-
sided SPRT, then this specially designed WSR procedure T∗SR becomes third-order
asymptotically optimal, i.e.,

sup
θ∈Θ,ν≥0

J θν (T∗SR) = inf
T∈C(γ)

sup
θ∈Θ,ν≥0

J θν (T ) + o(1) as γ →∞,

where o(1)→ 0 as γ →∞.
The proofs are based on the works by Pollak [5, 4] and recent results of Fellouris

and Tartakovsky [2].
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Optimal trade execution and price manipulation
in order books with time-varying liquidity

Antje Fruth1 Torsten Schöneborn2 Mikhail Urusov3

1Deutsche Bank, Berlin, Germany
2Deutsche Bank, London, UK

3Ulm University, Ulm, Germany

1. Summary: In financial markets liquidity is not constant over time but exhibits
strong seasonal patterns. We consider a limit order book model that allows for
time-dependent, deterministic depth and resilience of the book and determine op-
timal portfolio liquidation strategies. In a first model variant we propose a trading
dependent spread that increases when market orders are matched against the order
book. In this model no price manipulation occurs and the optimal strategy is of
the “wait region – buy region” type often encountered in singular control prob-
lems. In a second model we assume that there is no spread in the order book.
Under this assumption we find that price manipulation can occur, depending on
the model parameters. Even in the absence of classical price manipulation there
may be transaction-triggered price manipulation. In specific cases, we can state
optimal strategies in closed form. The talk is based on [8].

2. Empirical investigations have demonstrated that liquidity varies over time. In
particular deterministic time-of-day and day-of-week liquidity patterns have been
found in most markets. In spite of these findings the academic literature on optimal
trade execution usually assumes constant liquidity during the trading time horizon.
In the talk we relax this assumption and analyze the effects of deterministically
varying liquidity on optimal trade execution for a risk-neutral investor. We char-
acterize optimal strategies in terms of a trade region and a wait region and find
that optimal trading strategies depend on the expected pattern of time-dependent
liquidity. In the case of extreme changes in liquidity, it can even be optimal to en-
tirely refrain from trading in periods of low liquidity. Incorporating such patterns
in trade execution models can hence lower transaction costs.

Time-dependent liquidity can potentially lead to price manipulation. In periods
of low liquidity, a trader could buy the asset and push market prices up significantly;
in a subsequent period of higher liquidity, he might be able to unwind this long
position without depressing market prices to their original level, leaving the trader
with a profit after such a round trip trade. In reality such round trip trades are
often not profitable due to the bid-ask spread: once the trader starts buying the
asset in large quantities, the spread widens, resulting in a large cost for the trader
when unwinding the position. We propose a model with trading-dependent spread
and demonstrate that price manipulation does not exist in this model in spite of
time-dependent liquidity. In a similar model with fixed zero spread we find that
price manipulation or transaction-triggered price manipulation (a term recently

Speaker: Mikhail Urusov, e-mail: mikhail.urusov@uni-ulm.de
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coined by [2] and [9]) can be a consequence of time-dependent liquidity.
Our liquidity model is based on the limit order book market model of [11], which

models both depth and resilience of the order book explicitly. The instantaneously
available liquidity in the order book is described by the depth. Market orders
issued by the large investor are matched with this liquidity, which increases the
spread. Over time, incoming limit orders replenish the order book and reduce the
spread; the speed of this process is determined by the resilience. We generalize the
model of [11] in that both depth and resilience can be time dependent. In relation
to the problem of optimal trade execution we show that there is a time dependent
optimal ratio of remaining order size to bid-ask spread: If the actual ratio is larger
than the optimal ratio, then the trader is in the “trade region” and it is optimal to
reduce the ratio by executing a part of the total order. If the actual ratio is smaller
than the optimal ratio, then the trader is in the “wait region” and it is optimal to
wait for the spread to be reduced by future incoming limit orders before continuing
to trade. We will see that allowing for time-varying liquidity parameters brings
qualitatively new phenomena into the picture. For instance, it can happen that it
is optimal to wait regardless of how big the remaining position is, while this cannot
happen in the framework of [11].

Building on empirical investigations of the market impact of large transactions,
a number of theoretical models of illiquid markets have emerged. One part of these
market microstructure models focuses on the underlying mechanisms for illiquidity
effects, e.g., [10] and [7]. We follow a second line that takes the liquidity effects as
given and derives optimal trading strategies within such a stylized model market.
Two broad types of market models have been proposed for this purpose. First,
several models assume an instantaneous price impact, e.g., [5], [4] and [3]. The
instantaneous price impact typically combines depth and resilience of the market
into one stylized quantity. Time-dependent liquidity in this setting then leads to
executing the constant liquidity strategy in volume time or liquidity time, and no
qualitatively new features occur. In a second group of models resilience is finite
and depth and resilience are separately modelled, e.g., [6], [11], [1] and [12]. Our
model falls into this last group. Allowing for time-dependent depth and resilience
leads to higher technical complexity, but allows us to capture a wider range of real
world phenomena.
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Arrow-Debreu equilibria for rank-dependent utilities

Xunyu Zhou

The University of Oxford, UK

We provide conditions on a pure exchange economy with rank-dependent util-
ity agents under which Arrow-Debreu equilibria exist. When such an equilibrium
exists, we derive the state-price density explicitly, which is a weighted marginal
rate of substitution between initial and end-of-period consumption of a representa-
tive agent, while the weight is expressed through the differential of the probability
weighting function. A key step in our derivation is to obtain an analytical solu-
tion to the individual consumption optimization problem that involves the concave
envelope of certain non-concave function. Based on the result we have several find-
ings, including that asset prices depend upon agents’ subjective belief on overall
consumption growth, that an uncorrelated security’s entire probability distribution
and its dependence with the other part of the economy should be priced, and that
there is a direction of thinking about the equity premium puzzle and the risk-free
rate puzzle. Moreover, we propose a “rank-neutral probability” that is an appro-
priate modification of the original probability measure under which assets can be
priced in the same way as in an economy with expected utility agents.

This is a joint work with Jiangming Xia.

Author’s email: zhouxy@maths.ox.ac.uk
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Stochastic mechanical systems with unilateral state constraints:
control prospects

Svetlana V. Anulova

Institute for Control Sciences, Moscow, Russia

1. There are two important intensively investigated fields in the theory of mechan-
ical systems: systems with unilateral state constraints [1] and systems with random
perturbations [2]. We begin a pioneering work in the overlap of these fields.

2. Consider a system, describing a particle moving in the axis with specular reflec-
tion at {0}: t ≥ 0,

dXt = Yt dt+ dψt, Xt ≥ 0, X0 = x ≥ 0,

dYt = b(Xt, Yt) dt+ dWt + dϕt, Y0− = y; (1)

dψt ≥ 0,

∆ψt = 0, ψ0 = 0; (2)

dφt = dφtI{0}(Xt) ≥ 0,

∆φt = 2|Yt−|I(−∞,0](Yt−), φ0− = 0. (3)

Here W is a random perturbation — the Wiener process — and φ is a random non-
decreasing process, describing the reflection impacts on the velocity. The process
ψ has no physical interpretation. Probably it equals zero, but it is not proven. At
present we know only that dψt = dψtI{0,0}(Xt, Yt).

The problem (1), (2) does not fit into the pattern of reflected diffusions in sense
of Skorokhod.

Our ultimate aim is to transfer the results of [3] to the object (1)-(3). [3]
consideres a control problem for a process in a convex domain, reflected in sense
of Skorokhod. The payoff functional has infinite horizon and time discount. The
problems of existence and optimization for the process are solved (Theorem 2.2 [3])
by a penalization method, which gives great opportunities for numerical calcula-
tions. The specular reflection operator is far and away more difficult to work with
than the Skorokhod one. At present we do not know how to apply the penalization,
and our achievement is the proof of existence of a solution of (1)-(3) by another
method.

Theorem 1. Assume that b is continuous and of no more than linear growth.
Then for any initial conditions the solution exists (a weak one, in the sense of
distributions).

The proof uses the approach for SDE with reflecting boundaries in sense of
Skorokhod: φ is approximated with a special discretization, and the correspondent
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solutions converge weakly as random processes. In the next two paragraphs we
describe “cornerstones” of the proof.

3. Basing on (1)-(3), we can define a specular reflection operator acting on f ∈ C1
b .

Let us construct its ε-approximation. Hitting level −ε at moment t, Xε gets a jump
∆Xε

t = ε, and Y ε — ∆Y ε
t = 2|∆Y ε

t−|.

Lemma 2. Let t > 0, ∆ϕεt > 0. Then f ′(t) < 0, ϕεt− < |f ′(t)|, and ϕεt < 3|f ′(t)|.

Proof. ∆ϕεt > 0 implies Y ε
t− < 0, so f ′(t) + ϕεt− < 0, which yields: f ′(t) <

0; |Y ε
t−|+ ϕεt− = |f ′(t)| and |Y ε

t−| ≤ |f ′(t)|. Finally, ∆ϕεt = 2|Y ε
t−| ≤ 2|f ′(t)|.

Now take δ > 0 and construct a partition: t0 = 0, t1 = the first moment Xε hits
−ε, ..., ti+1 = the first moment Xε hits −ε after ti + δ,... This partition assures:
modulus of continuity of ϕ is “majorized” by that of f ′. Indeed, let us shift the
problem to [ti,∞) and the function

Xε
ti +

∫ t

ti

(ϕti + f ′(s))ds.

The behavior of Y ε on [ti, ti+1) may be regarded as an ε-approximation of (f ′+ϕti).
Applying then Lemma 2 we get ϕti+1 − ϕti ≤ −(f ′ + ϕti)(ti). Since f ′ + ϕti+1 ≥ 0,
the right hand side is majorized by

osc
[ti,ti+1)

(f ′ + ϕti) = osc
[ti,ti+1)

f ′.

4. Operator ψε is an approximation of the Skorokhod reflection for function Xε−
ψε. The difference of this function and f is non-decreasing. This allows to “ma-
jorize” ψε by the Skorokhod reflection for f (which is equal to −(mins∈[0,t) f(s)∧0));
see Theorem 1 [4]. And if the value of the solution of (1)-(3) at moment t
(Xt = 0, Yt− < 0), then the jump ∆ϕt is isolated (on the time axis). But as a
continuous function ψ can’t grow at an isolated point.

Acknowledgements. Partially supported by RFBR grant 11-01-00949a.
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Threshold strategies in optimal stopping
and free-boundary problems

Vadim Arkin Alexander Slastnikov

Central Economics and Mathematics Institute, Moscow, Russia

1. Let Xt, t ≥ 0 be a homogeneous diffusion process defined on a stochastic basis
(Ω,F , {Ft, t ≥ 0},P) with values in an interval I =]l, r[⊂ R1, −∞ ≤ l < r ≤ ∞
and the infinitesimal operator LXf(x) = a(x)f ′(x) + 1

2σ
2(x)f ′′(x).

We assume that Xt is a regular process with starting point X0 = x, and left
endpoint l of the state space is either a natural or an entry-not-exit point.

Let us consider the following optimal stopping problem for this process:

V (x) = sup
τ∈M

Exg(Xτ )e−ρτ , (1)

where g : I → R1 is a reward function (continuous and bounded below), ρ > 0 is
discount rate, and maximum is taken over some class M of stopping times (s.t.) τ
(with respect to ‘natural’ filtration FXt = σ{Xs, 0 ≤ s ≤ t}, t ≥ 0).

2. Let us consider the class of stopping times induced by ‘threshold strategies’,
i.e. the class M0 of τp = inf{t≥0 : Xt ≥ p} (first time when process Xt exits the
interval ]l, p[) for all p ∈ I.

The optimal stopping problem (1) over the class M0 can be rewritten as follows:

V ∗(x) = sup
p∈I

Exg(Xτp)e
−ρτp . (2)

We will call a set {V ∗(x) > g(x)} as a continuation set for the problem (2).

Define the function h(p) = g(p)/ψ(p), p ∈ I, where ψ(x) is the unique (up to
a multiplicator) increasing solution to the equation LXu(x) = ρu(x) at the interval
I.

The following result gives the necessary and sufficient conditions for a continu-
ation set in the problem (2) will be an interval.

Theorem 1. The interval ]l, p∗[, where l < p∗ < r, is the continuation set for
the problem (2) if and only if the following conditions hold:

h(p) < h(p∗) whenever p < p∗; h(p) does not increase for p > p∗. (3)

In particular, a boundary of a continuation set p∗ is a maximum point of the
function h. This implies the necessity (under minimal assumptions) of smooth-
pasting principle (see also [1, 2]).

The conditions (3) are remained necessary also for the optimal stopping problem
(1) over all stopping times M if the continuation set {V (x) > g(x)} is an interval
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]l, p∗]. Under some additional assumptions these conditions will be sufficient also
for the continuation set in the problem (1) over all stopping times M.

Theorem 2. Let for some p∗ ∈ I the conditions (3) hold and, moreover,
g ∈ C2(]p∗, r[); τp∗ = inf{t≥0 : Xt ≥ p∗} <∞ (a.s.) for x < p∗; LXg(x) ≤ ρg(x)
for x > p∗. Then {V (x) > g(x)} =]l, p∗[, i.e. the continuation set in the problem
(1) over all stopping times is the interval ]l, p∗[.

3. For the considered threshold strategies the free-boundary problem can be writ-
ten as follows: to find a threshold p̄ and a function U(x), l < x < p̄, such that

LXU(x) = ρU(x), l < x < p̄; (4)

U(p̄− 0) = g(p̄); (5)

U ′(p̄− 0) = g′(p̄). (6)

The conditions (4)–(5) hold for the function U(x) = h(p̄)ψ(x) (for x < p̄),
and smooth-pasting condition (6) is equivalent to stationarity h at the point p̄,
i.e. h′(p̄) = 0. There are simple examples for which the free-boundary problem
has several solutions, or does not give a solution to optimal stopping problem (see,
e.g., [3]).

Let us denote Vp(x) = Exg(Xτp)e
−ρτp for any x, p ∈ I.

Theorem 3. Let (U(x), p∗) be a solution to free-boundary problem (4)-(6) and
g ∈ C2(R1). Then:

1) if U ′′(p∗)>g′′(p∗), then p∗ is the point of local maximum (in p) of the function
Vp(x), moreover, for x<p∗ we have Vp(x) < Vp∗(x) at some neighbourhood of p∗;

2) if U ′′(p∗)<g′′(p∗), then p∗ is the point of local minimum (in p) of the function
Vp(x), moreover, for x<p∗ we have Vp(x) > Vp∗(x) at some neighbourhood of p∗.

The case U ′′(p∗) = g′′(p∗) needs the additional considerations and maybe ap-
plication of high-order conditions.

For the case of several solutions to free-boundary problem Theorem 3 allows to
discard such solutions that do not solve the optimal stopping problem (e.g. giving
local minimum in p to function Vp(x)).

Acknowledgements. The work is supported by RFBR (projects 10-01-00767,
11-06-00109) and RFH (project 10-02-00271).
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Predicting the ultimate maximum of a Lévy process

Erik Baurdoux

London School of Economics and Political Science, UK

Optimal prediction of the ultimate maximum is a non-standard optimal stop-
ping problem in the sense that the pay-off function depends on a process which is
not adapted to the given filtration, in this case the ultimate maximum. For a finite
time horizon, this problem has been studied in various papers including Graversen,
S. E. and Peskir, G. and Shiryaev, A. N. (2001 Theory Probab. Appl.), Du Toit, J.
and Peskir, G. (2009 Ann. Appl. Probab.), Bernyk, V., Dalang, R. C. and Peskir,
G. (2011 Ann. Probab.). In this work we consider the infinite horizon case for a
Lévy process drifting to minus infinity. We also find a more explicit expression for
the optimal stopping time in the spectrally one-sided case.
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Optimal production management
when demand depends on the business cycle

Abel Cadenillas1 Peter Lakner2 Michael Pinedo2

1University of Alberta, Edmonton, Canada
2Stern School of Business, New York City, USA

We assume that consumer demand for an item follows a Brownian motion with
drift that is modulated by a continuous-time Markov chain that represents the
regime of the economy. The economy may be in either one of two regimes, it remains
in one regime for a random amount of time that is exponentially distributed with
rate λ1, and then moves to the other regime and remains there for an exponentially
distributed amount of time with rate λ2. Management of the company would like
to maintain the inventory level of the item as close as possible to a target inventory
level and would also like to produce the items at a rate that is as close as possible
to a target production rate. The company is penalized by the deviations from the
target levels and the objective is to minimize the total discounted penalty costs
over the long term. We consider two models. In the first model the management of
the company observes the regime of the economy at all times, whereas in the second
model the management does not observe the regime of the economy. We solve both
problems and obtain the optimal production policy as well as the minimal total
expected discounted cost. Our analytical results show, among various other results,
that in both models the optimal production policy depends on factors that are based
on short term concerns as well as factors that are based on long term concerns. We
analyze how the impact of these factors depend on the values of the parameters
in the model. In addition, we compare the total expected discounted costs of
the two models with one another and determine the value of knowing the current
regime of the economy. We also solve the above problems when the cumulative
consumer demand follows a geometric Brownian motion that is modulated by the
continuous-time Markov chain that represents the regime of the economy.

Acknowledgements. The research of A. Cadenillas was supported by the Social
Sciences and Humanities Research Council of Canada and by the WCU(World Class
University) program through the National Research Foundation of Korea funded
by the Ministry of Education, Science and Technology (R31-2009-000-20007).
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On estimate for variational inequality
associated to optimal stopping

Besarion Dochviri Petre Babilua

I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

1. We consider a probability space (Ω,F , P ) and an n-dimensional Wiener process
wt = (w1

t , . . . , w
n
t ) on it. LetD be a bounded domain in Rn with a smooth boundary

(∂D ∈ C2). Denote σ(D) = inf{t ≥ 0 : wt ∈D}, and let g = g(x), c = c(x) be
continuous functions defined on D. Denote also by Px the probability measure
corresponding to the initial condition w0(ω) = x and define the following optimal
stopping problem

S(x) = sup
τ∈M

Ex

(
g(wτ )I(τ<σ(D)) +

τ∧σ(D)∫
0

c(ws) ds

)
, (1)

where M is the class of all stopping times with respect to the filtration Fw =
(Fwt )t≥0. The optimal stopping problem consists in finding a payoff S(x) and in
defining the optimal stopping time τ∗ at with the supremum (1) is achieved [1].

2. Denote by H1(D) the first order Sobolev space of functions v = v(x) on D and
let H1

0 (D) be the subspace of H1(D) consisting of the functions v = v(x), “equal
to zero” on the boundary ∂D. Denote K = {v : v ∈ H1

0 (D), v(x) ≥ g(x)} and
let a(u, v) be scalar product in H1

0 (D). The variational inequality is formulated as
follows: find a function u(x) ∈ K such that the inequality

a(u, v − u) ≥
∫
D

c(x)(v(x)− u(x)) dx (2)

is fulfilled for any function v(x) ∈ K. In [2] A. Bensoussan has established the fun-
damental connection between the optimal stopping problem and the corresponding
variational inequality. In particular, he has shown that

u(x) = S(x), x ∈ D, (3)

and the estimate

sup
x∈D
|u2(x)− u1(x)| ≤ sup

x∈D
|g2(x)− g1(x)| (4)

holds, where the functions ui(x), i = 1, 2, represent the solutions of the variational
inequality (2) for the functions gi(x), i = 1, 2.

3. Via the stochastic analysis the present paper gives an answer to the following
question: does the uniform closeness of the functions g1(s) and g2(x) imply in a

Speaker: Besarion Dochviri, e-mail: besarion.dochviri@tsu.ge



Contributed talks 77

certain sense the closeness of the partial derivatives ∂u1(x)
∂xi

, ∂u2(x)
∂xi

, i = 1, . . . , n,

of the corresponding solutions u1(x) and u2(x) of the variational inequality (2)?
Using the results from [1] and [3] , we obtain a new estimate which is formulated
as follows.
Let gi(x), ci(x), i = 1, 2, be two initial pairs of the variational inequality (2). Than
for the solutions ui(x), i = 1, 2, of the problem (2) the global estimate∫

D

d2(x, ∂D)
∣∣grad (u2 − u1)(x)

∣∣2 dx+

∫
D

(u2(x)− u1(x))2 dx ≤

≤ C
[(

sup
x∈D
|g2(x)− g1(x)|+ sup

x∈D
|c2(x)− c1(x)|

)
×

×
(

sup
x∈D
|g1(x)|+ sup

x∈D
|c1(x)|+ sup

x∈D
|g2(x)|+ sup

x∈D
|c2(x)|

)]
is valid, where d(x, ∂D) is the distance from the point x to the boundary ∂D, C
is a constant depending on the dimension of the space Rn and on the Lebesgue
measure of D, i.e. C = C(n,mes(D)).
In [4] analogous estimates are used for optimal portfolio in the pricing problem of
American type options.

Acknowledgements. The authors are grateful to A. N. Shiryaev for their at-
tention to the problem. The work is supported by I. Javakhishvili Tbilisi State
University.
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Optimal investment with random innovations

Manuel Guerra1,2 Cláudia Nunes3 Pedro Pólvora1

1ISEG - Tech. University of Lisbon, Lisbon, Portugal
2CEMAPRE, Lisbon, Portugal

3IST - Tech. University of Lisbon, Lisbon, Portugal

We consider a simplified model of a firm whose performance is a function of the
technology level. The firm operates with an initial technology level m and the cur-
rent (best) technology available is assumed to be a renewal process Nt with discrete
increments. At any moment the firm can switch to the best technology available,
incurring an investment cost. We seek the strategy (i.e., the best investment time)
maximizing the life-time discounted value of the firm.

We provide a general characterization of the optimal solution. For some par-
ticular structures of the renewal process’ intensity, it is possible to derive explicit
solutions.
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On a structure of a minimax test in testing composite hypotheses

Alexander A. Gushchin

Steklov Mathematical Institute, Moscow, Russia

1. We consider the problem of testing two composite hypotheses in the minimax
setting. Namely, let P (“null hypothesis”) and Q (“alternative hypothesis”) be
two families of probability measures on a measurable space (Ω,F ). It is assumed
that both families are dominated, say, by a probability measure R; E stands for
expectation with respect to R. It is convenient for us to identify measures from
P and Q with their densities with respect to R. We denote by Φ the set of all
randomized tests, i.e., measurable functions ϕ : Ω → [0, 1]. The set Φα, α ∈ [0, 1],
of tests of level α is defined by

Φα :=
{
ϕ ∈ Φ: E[pϕ] ≤ α for every p ∈P

}
.

The problem is to find a minimax test, i.e. a test ϕ∗ ∈ Φα such that

inf
q∈Q

E[qϕ∗] = sup
ϕ∈Φα

inf
q∈Q

E[qϕ] =: v(α).

It is well known that a minimax test always exists.

2. Put α0 := sup
P∈P

inf
A∈F : Q(A)=1 ∀Q∈Q

P(A), β0 := sup
Q∈Q

inf
A∈F : P(A)=1 ∀P∈P

Q(A). It is

easy to check that v(0) = 1−β0 and v(α) = 1 iff α ≥ α0 and to find minimax tests
for such values of α.

In what follows co(·) stands for the convex hull and bar means the closure
with respect to the convergence in R-probability. Define a functional F (p, q, z),
p ∈ co(P), q ∈ co(Q), z > 0, by

F (p, q, z) := −E[q ∧ (zp)] + αz + 1. (1)

Introduce the following (dual) minimization problem:

F (p, q, z) −→ min; p ∈ co(P), q ∈ co(Q), z > 0. (2)

Theorem 1. Let 0 < α < α0.
(i) If ϕ∗ ∈ Φα and (p∗, q∗, z∗) ∈ co(P)× co(Q)× (0,∞) are such that

ϕ∗ =

{
1, if q∗ > z∗p∗,
0, if q∗ < z∗p∗,

(3)

E[p∗ϕ∗] = α, (4)

E[q∗(ϕ∗ − 1)] = inf
q∈Q

E[q(ϕ∗ − 1)], (5)
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then ϕ∗ is a minimax test and (p∗, q∗, z∗) is a solution to (2).
(ii) Assume that the family {p ∧ q : p ∈ co(P), q ∈ co(Q)} is R-uniformly

integrable. Then (2) has, at least, one solution,

min
(p,q,z)∈co(P)×co(Q)×(0,∞)

F (p, q, z) = v(α),

and (3)–(5) hold for any minimax test ϕ∗ and any solution (p∗, q∗, z∗) to (2).

Remark 1. This result is symmetrical between P and Q. In particular, α  
1 − v(α) is a decreasing one-to-one mapping from (0, α0) onto (0, β0), ϕ∗ is a
minimax test of level α ∈ (0, α0) for testing P against Q if and only if 1− ϕ∗ is a
minimax test of level 1−v(α) for testing Q against P, and (p∗, q∗, z∗) is a solution
to the dual problem (2) if and only if (q∗, p∗, 1/z∗) is a solution to the problem
obtained from (2) after exchanging P and Q and replacing α by 1− v(α).

3. The sufficiency of conditions (3)–(5) for ϕ∗ ∈ Φα to be a minimax test is a
classical result established in Lehmann [3], where p∗ and q∗ are assumed to be
Bayesian mixtures of measures from P and Q. It is easy to show that these sets
of mixtures, mix(P) and mix(Q), are subsets of co(P) and co(Q), respectively. A
method to find optimal Bayesian mixtures was suggested by Krafft and Witting [2]
who introduced a dual problem similar to (2), p and q being varied over mix(P)
and mix(Q). However, a solution of the minimization problem over such a domain
exists under rather strong assumptions. To ensure the existence of a solution, Cvi-
tanić and Karatzas [1] considered a dual problem with not necessarily probability
densities. Namely, they assumed that q ∈ Q = co(Q) (which implies the uniform
integrability of Q) and p ∈ {p ≥ 0: E[pϕ] ≤ α for every ϕ ∈ Φα} and proved a
result similar to ours. However, they did not observe that the above set can be
replaced by a smaller set co(P). This last remark allows us to prove directly the
main result in Rudloff and Karatzas [4] as well. Finally, let us mention that in all
the papers mentioned above the variable q is always a probability density. In such
a case, the functional F in (1) and relation (5) can be written alternatively as

F (p, q, z) = E[(q − zp)+] + αz, E[q∗ϕ∗] = inf
q∈Q

E[qϕ∗],

as is done in these papers.
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Net gain problem with two stops for an urn scheme

Vladimir V. Mazalov Anna A. Ivashko

Institute of Applied Mathematical Research,

Karelian Research Center of RAS, Petrozavodsk, Russia

In this paper, the following optimal double stopping problem on trajectories is
considered. Suppose that there is an urn containing m balls of value −1 and p balls
of value +1. The player is allowed to draw ball randomly, without replacement,
one by one. The value −1 is attached to minus ball and value +1 to plus ball.

Determine sequence Z0 = 0, Zn =
n∑
k=1

Xk, 1 ≤ n ≤ m+ p, where Xk is the value of

the ball chosen at the k-th draw. The player observes the values of the balls and
wants to make two stops. The aim of player is to maximize the expected gain, the
gain is difference between maximum and minimum values of the trajectory formed
by {Zn}m+p

n=0 (net gain problem).
This urn scheme could be considered as the buying-selling problem. Here the

value of the ball is change of the cost of an asset. The first stop means the buying
of an asset and the second stop is the selling of an asset. In net gain problem the
player wants to maximize the difference between costs.

The urn schemes with one stop was considered by Shepp L. (1969) (net gain
problem), Tamaki M. (2001) (max-problem), Mazalov V.V., Tamaki M. (2007)
(duration problem).

Acknowledgements. The work is supported by Russian Foundation for Basic
Research, project 10-01-00089-a and by the Division of Mathematical Sciences.
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On a two-side disorder problem for a Brownian motion
in a Bayesian setting

Alexey Muravlev

Steklov Mathematical Institute, Moscow, Russia

1. Suppose we sequentially observe a stochastic process X = (Xt)t≥0 having the
structure

dXt = µI(t ≥ θ)dt+ dBt,

where B = (Bt)t≥0 is a standard Brownian motion, θ > 0 and µ are unobservable
random variables with known distributions, independent mutually and of B. The
random variable θ is the moment when the drift of Xt changes its value from zero
to µ, i.e. “disorder” happens.

In this paper we consider the case when random variables θ and µ have the
following structure: θ takes value 0 with probability p (q = 1 − p below) and it is
exponentially distributed with parameter λ > 0 given that θ > 0; µ takes values
µ1 < 0 and µ2 > 0 with corresponding probabilities ρ1 and ρ2 = 1 − ρ1. Being
based upon the continuous observation of X our task is to detect the moment of
disorder θ and define the value of µ (to test µ for hypotheses H1 : µ = µ1 and
H2 : µ = µ2) with minimal loss.

For this, we consider a sequential decision rule δ = (τ, d), where τ is a stopping
time of the observed process X (with respect to the natural filtration (FXt )t≥0), and
d is an FXτ -measurable random variable taking values d1 and d2. After stopping
the observation at time τ the terminal decision d indicates which hypothesis on the
drift value should be accepted: if d = d1 we accept H1 and if d = d2 we accept H2.

With each decision rule δ = (τ, d) we associate the Bayesian risk

R(δ) = Rθ(δ) + Rµ(δ),

where
Rθ(δ) = P(τ < θ) + cE[τ − θ]+

is a combination of the probability of a “false alarm” and the average delay in
detecting the “disorder” correctly, c > 0 is a given constant, and

Rµ(δ) = aP(d = d1, µ = µ2) + bP(d = d2, µ = µ1)

is the average loss due to a wrong terminal decision, where a > 0 and b > 0 are
given constants.

The problem then consists of finding the decision rule δ∗ = (τ∗, d∗) such that

R(δ∗) = inf
δ
R(δ), (1)

where the infimum is taken over all decision rules δ.
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Thus, the problem under consideration combines the classical problems of de-
tecting the “disorder” and sequential hypothesis testing (for details see e.g. [1],
Chapter VI).

2. Introduce the a posteriori probability processes πi = (πit)t≥0, i = 1, 2 with

πit = P(θ ≤ t, µ = µi | FXt ), i = 1, 2.

The method of solution of (1) is natural in such kind of problems and consists in
reduction to an optimal stopping problem.

Theorem 1. The 2-dimensional process π = (π1, π2) is a Markov sufficient statis-
tic in problem (1). Moreover, the process π solves the following system of stochastic
differential equations:

dπit = λρi(1− π1
t − π2

t )dt+ πit

[µi
σ
−
(µ1

σ
π1
t +

µ2

σ
π2
t

)]
dBt, i = 1, 2,

where B = (Bt)t≥0 is a Brownian motion (generally, different from Bt). The opti-
mal stopping time τ∗ can be found as the solution of the optimal stopping problem

V (π) = inf
τ
Eπ

[
1− π1

τ − π2
τ + c

∫ τ

0
(π1
t + π2

t ) dt

+ a(ρ1π
2
τ + ρ2(1− π1

τ )) ∧ b(ρ2π
1
τ + ρ1(1− π2

τ ))

]
, (2)

where Eπ denotes the mathematical expectation with respect to the measure Pπ,
under which πt starts Pπ-a.s. from the point π. Terminal decision function is
defined as d∗ = d1 if a(ρ1π

2
τ + ρ2(1 − π1

τ )) < b(ρ2π
1
τ + ρ1(1 − π2

τ )) and d∗ = d2

otherwise.

In the talk we discuss analytical properties of the optimal stopping rules in the
problem (2) and show how to compute optimal stopping boundary numerically.

Acknowledgements. This research was partially supported by the Russian Min-
istry of Education and Science through the project No. 14.740.11.1144.
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Symmetric integrals and stochastic analysis

Farit S. Nasyrov

Ufa State Aviation Technical University, Ufa, Russia

1. In this paper following [1] we consider a symmetric integral
∫ t

0 f(s,X(s))∗dX(s)
with respect to an arbitrary continuous function X(s). If X(s) is a path of Brow-
nian motion, then the symmetric integral coincides with the Stratonovich integral.

Let 0 = t
(n)
0 < t

(n)
1 < ... < t

(n)
Nn

= t be a sequence of partitions such that

limn→∞maxk(t
(n)
k −t

(n)
k−1)→ 0. The limit lim

n→∞

∫ t
0 f(s,X(n)(s))(X(n))′(s)ds is called

a symmetric integral and is denoted by
∫ t

0 f(s,X(s))∗dX(s). Here X(n)(s) denotes
a broken line.

Suppose that for almost all u:

(a) f(s, u), s ∈ [0, t], is a right-continuous bounded variation function;

(b) the total variation |f |(t, u) of the function f(s, u), s ∈ [0, t], is an integrable
function;

(c)
∫ t

0 1(s : X(s) = u)|f |(ds, u) = 0;

then there exists a symmetric integral
∫ t

0 f(s,X(s)) ∗ dX(s).

The symmetric integral
∫ t

0 f(s,X(s)) ∗ dX(s) has the following properties:

(i) Let assumptions (a) – (c) hold, then∫ t

0
f(s,X(s)) ∗ dX(s) =

∫ X(t)

X(0)
f(t, u)du−

∫
R

∫ t

0
κ(u,X(0), X(s))f(ds, u)du,

here κ(u, a, b) = sign(b− a)1(a ∧ b < v < a ∨ b).

(ii) Suppose that F (t, u) has continuous partial derivatives F ′t , F
′
u; then

F (t,X(t))− F (0, X(0)) =

∫ t

0
Fu(s,X(s)) ∗ dX(s) +

∫ t

0
Fs(s,X(s))ds.

2. A scalar first-order pathwise differential equation in differential form is written
as the following equation

dξs = σ(s,X(s), ξs) ∗ dX(s) + b(s,X(s), ξs)ds, ξ0 = ξ(0), s ∈ [0, t0]. (1)

Here the first term in the right-hand corresponds to a symmetric integral, and the
second term corresponds to a Riemann integral. The function ξ(s) = φ(s,X(s)) is
called a solution if the following conditions hold:

(i) the function φ(s, v) has continuous partial derivatives ϕ′v(s, v), ϕ′′sv(s, v);

(ii) the function ξ(s) = φ(s,X(s)) satisfies (1).
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From now on we make the assumption: the continuous function X(s) is al-
most nowhere differentiable. The existence of solution of pathwise equation can be
guaranteed by the following theorem.

Theorem 1 Suppose that the functions σ(s, v, φ), σ′s(s, v, φ), σ′φ(s, v, φ), b(s, v, φ)
jointly continuous; then the following conditions are equivalent:

(i) there exist a solution ξ(s) = φ(s,X(s));

(ii) the function ξ(s) = φ(s, u), ϕ(0, X(0)) = ξ(0), for almost all s satisfies the
condition
φ′v(s,X(s)) = σ(s,X(s), φ(s,X(s))); φ′s(s,X(s)) = b(s,X(s), φ(s,X(s))).

Theorem 2 Let all assumptions of Theorem 1 hold. Suppose that the function
b′φ(s, v, φ) is jointly continuous; then there exists a unique solution of equation (1).

Remark 1 Let σ(s, v, φ) 6= 0. Using Theorem 1, we obtain the following equations
chain

φ′v(s, v) = σ(s, v, φ); φ′s(s,X(s)) = b(s,X(s), φ(s,X(s))).

To find a solution of (1), we need to find a solution of this chain of equations.

For example, suppose that ξt−ξ0 =
∫ t

0 [aξs+b]∗dX(s)+
∫ t

0 [hξs+g]ds is a linear
pathwise equation with respect to the symmetric integral. From Remark 1 it follows
that φ′u(t, u) = aφ(t, u) + b, φ′t(t, u)|u=X(t) = hφ(t,X(t)) + g, φ(0, X(0)) = ξ0.

Hence φ(t, u) = 1
a

(
eu+C(t) − b

)
, where C(s) is an arbitrary function. In order

to find a function C(s), it is necessary to solve the equation 1
ae
X(t)+C(t)C ′(t) =

h
a

(
eX(t)+C(t) − b

)
+ g with initial condition 1

a

(
eX(0)+C(0)) − b

)
= ξ0.

3. The results of section 2 can be extended to more complex equations.

(i) Consider the equation η(t)−η(0)=
d∑

k=1

t∫
0

ak(s, η(s))∗dWk(s) +
t∫

0

b(s, η(s))ds,

t ∈ [0, T ], where (W1(s), ...,Wd(s)) is a multi-dimensional Brownian motion. The
solution of this equation must be sought in the form of η(s) = φ(s,W1(s), ...,
Wd(s)). To find η(s), it is necessary to solve the equations chain

φ′uk(s,W1(s), ...,Wk−1(s), uk,Wk+1(s), ...,Wd(s)) =

= ak(s, φ(s,W1(s), ...,Wk−1(s), uk,Wk+1(s), ...,Wd(s)), k = 1, ..., d,

φ′s(s,W1(s), ...,Wd(s)) = b(s, φ′s(s,W1(s), ...,Wd(s))).

(ii) Similarly, for the evolutional differential equation

u(t, x)− u(0, x) =

∫ t

0
F1

(
s, x,X(s), u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)
ds+

+

∫ t

0
F2

(
s, x,X(s), u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)
∗ dX(s), (s, x) ∈ R+ ×Rn,
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k1 + ...+ kn = k ≤ m, the solution is sought in the form of u(s, x) = u(s, x,X(s)).
To find the solution of this equation, it is necessary to solve the equations chain

∂

∂v
u(s, x, v) = F2

(
s, x, v, u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)∣∣∣
u=u(s,x,v)

,

∂

∂s
u(s, x, v)|v=X(s) = F1

(
s, x,X(s), u,

∂u

∂x1
, ...,

∂ku

∂xk11 ...∂x
kn
n

, ...

)∣∣∣
u=u(s,x,X(s))

.

Note that this method can be applied to solve the problem of nonlinear filtering of
diffusion processes.

4. The linearization problem (see [1] for more details) of the stochastic ordinary
differential equations is to find a change of variables such that a transformed equa-
tion becomes a linear equation.

Theorem 3 Suppose that the coefficients σ and b of the equation (1) are con-
tinuous and σ 6= 0. Then (1) is reducible to the linear differential equation
dηt = A(t)ηt ∗ dX(t) +B(t)ηtdt.
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Locally most powerful group-sequential tests
when the groups are formed randomly

Petr Novikov1 Andrey Novikov2

1Self-employed, Kazan, Russia
2Universidad Autónoma Metropolitana – Iztapalapa, Mexico City, Mexico

1. Let a sequential statistical experiment be conducted in the following way: at
each stage, we observe a group of random variables (Xi,1, Xi,2, . . . , Xi,ni); the ob-
servations Xi,j are i.i.d. with the distribution Pθ, θ ∈ Θ, where Θ is an open subset
of the real line, and the size of the i-th group, ni, is defined by a random variable
νi. Let κn, a non-decreasing function of n, be the cost to obtain a group of n
observations (in the simplest case κn ≡ 1). We consider a problem of testing a
simple hypothesis H0 : θ = θ0 against a composite alternative H1 : θ > θ0, where
θ0 ∈ Θ is some fixed point.

The goal is to construct a locally most powerful (LMP) test for this problem,
i.e. a test maximizing the slope of the power function at θ = θ0 in the class of all
sequential tests such that type I error and the average overall cost of the experiment
do not exceed the given constants.

2. Let fθ be the probability density function (a Radon-Nikodym derivative) of Pθ,
with respect to some σ-finite measure µ, for all θ ∈ Θ.

Suppose the fulfillment of the following conditions:

C1. ∃γ1 : lim supθ→θ0 I(θ0, θ)/(θ − θ0)2 = γ1 <∞,
where I(θ0, θ) = Eθ0 ln fθ0(X1)/fθ(X1) is the Kullback-Leibler information.

C2. ∃ ḟθ0 : ḟθ0 is integrable (with respect to µ) and∫
|fθ − fθ0 − (θ − θ0)ḟθ0 |dµ = o(θ − θ0),

as θ → θ0, i.e. ḟθ0 is the Fréchet derivative of fθ at θ = θ0 in L1(µ).

C3. ∃δ1 <∞ : Eνi < δ1 ∀i ∈ N.

C4. ∃δ2, δ3 : 0 < δ2 ≤ Eκνi ≤ δ3 <∞ ∀i ∈ N.

3. Then the LMP group-sequential test is defined by the stopping time

τ = inf

k :

k∑
i=1

ni∑
j=1

ḟθ0(Xi,j)

fθ0(Xi,j)
6∈ (−A,B)


and the terminal decision to reject H0 if

k∑
i=1

ni∑
j=1

ḟθ0(Xi,j)/fθ0(Xi,j) > B,
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where A and B are some positive numbers.

4. In case P (νi = 1) = 1 for all i ≥ 1, the LMP group-sequential test becomes
a LMP sequential test considered in [1], [2], [3]. An optimal group-sequential test
for testing a simple hypothsis against a simple alternative for discrete distributions
was considered in [4].
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de tamaño aleatorio. Master Thesis, UAM – Iztapalapa, Mexico City, Mexico.

[5] A. Novikov, P. Novikov. Locally most powerful group-sequential tests when the groups
are formed randomly. To be submitted.



Contributed talks 89

Optimal stopping of geometric Brownian motion
with partial reflection

Ernst Presman1 Vadim Yurinsky2

1CEMI RAS, Moscow, Russia
2Universidade da Beira Interior, Covilha, Portugal

We consider a problem of optimal stopping for geometric Brownian motion Zt
on ]0,∞[ with parameters b, σ and killing intensity r. at the point x there is a
partial reflection, so that Px[Zt > x] → (1 + α)/2 as t → 0, −1 < α < 1. The
payoff function ḡ(z) = (z−K)+. The value function is V (z) = sup

τ
Ez ḡ(Zτ ), where

supremum is taken over all stopping times τ .
An algorithm of constructing the value function for the problem of optimal

stopping of one-dimensional regular diffusion with finite number of singular points
was given in [1]. The term “singular point” refers to points of partial reflection
of diffusion, the points of discontinuities of payoff function and its first derivative,
as well as the ends of intervals, where application of the first revaluation operator
to the payoff function takes positive values. The algorithm is based on the notion
of modification of the payoff function (modification does not change the value
function).

Preliminary results were given in [2]. In particular the case of Brownian motion
with partial reflection was considered. After reading the paper [2] M.Zervos decided
to consider the case of geometric Brownian motion with partial reflection and gave
a talk on The Sixth Bachelier Colloquium: Mathematical Finance and Stochastic
Calculus, January 15-22, 2012, Métabief, France [3].

A dependence of the optimal strategy on the values of three parameters (x, α,K)
was described in [3] for the case b < r. The proof was based on the variational
inequalities. We show that without restriction of generality one can consider only
the case K = 1 and give the transparent picture of the dependence (see Fig. 1).
We consider also the case b = r. In case b > r one has V (z) ≡ ∞.

Our approach is based only on the references to the results of [1] and explicit
calculation of f]c, d[(z) = Ezf(Zτ]c, d[) where τ]c, d[ = inf{t : t ≥ 0, Zt /∈]c, d[}.
If f]c, d[(z) > f(z) for z ∈]c, d[ then according to [1] the function f]c, d[(z) is a
modification of f(z). The function f]c, d[(z) satisfies on ]c, d[ the equations Lf(z) =
0, L1f(z) = 0, where the revaluation operators L and L1 for this problem are

Lf(z) :=
(
σ2z2/2

)
f ′′(z) + bzf ′(z)− rf(z) for z 6= x,

L1f(z) := (1 + α(z))f ′+(z)− (1− α(z))f ′−(z), where α(z) =

{
α for z = x,
0 for z 6= x.

The general solution of the equation Lf(z) = 0 has a form azn + Bzm, where n

and m < n are the solutions of the equation
σ2

2
λ(λ− 1) + bλ− r = 0.
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The function ḡ(z) in case K = 1 is a modification of g(z) = z−1. Therefore in-
stead of ḡ(z) it is more convenient to consider the problem with the payoff function

g(z). Since Lg(z) = (b − r)z − r there are two singular points: x and xb =
r

r − b
.

An important role plays also the point xn =
n

n− 1
such that ]xn,∞[ is a stopping

set for the case without partial reflection (α = 0). It follows from the equation for
m and n that n > 1, m < 0, and that r/b > n, so that xb < xn.

It follows from [1] that g(1)(z) = g]0,min(x,xb)[(z) is a modification of g(z) and, if

xb > x, then also g(2)(z) = g
(1)
]x, xb[

(z) is a modification of g(z). Further modifications
in the neighborhoods of points x and xb give the following result.

   α 

    1 

                                I                                             α(x) 

                                                                                                         V 

    0                   1          xb          xn                                                                              x 

    

                                             III    IV 

                                II 

  -1                                                                                                                                  

 

Figure 1: Partition of B = {(x, α) : x > 0, α ∈] − 1, 1[} in accordance with the
character of the stopping set D:
I. If α > α(x) then D = [d(x, α),∞[, where d(x, α) > x;
II. If 1 < x < xb and −1 < α ≤ α(x), then D = {x}

⋃
[d(x),∞[, where d(x) > x;

III. If xb ≤ x ≤ xn and −1 < α ≤ α(x) then D = [x,∞[;
IV. If xn < x <∞ and −1 < α ≤ 0 then D = [xn,∞[;
V. If xn < x <∞ and 0 < α ≤ α(x) then D = [xn, c(x, α)[

⋃
[d(x, α),∞[ where

c(x, α) < x < d(x, α) for α < α(x) and c(x, α(x)) = x = d(x, α(x)).
The values d(x, α), d(x) and c(x, α) are defined from the smooth-fitting conditions.

If r = b,K = 1 then there are two cases. If x > 1, α < α∗ for some α∗ > 0 then
for z < x the optimal stopping time is the time of the first visit of x, and for z > x
one has V (z) = limd→∞ g]x,d[(z). Otherwise V (z) = limd→∞ g]0,d[(z).

Acknowledgements. The work of the first author was supported by RFBR grant
10-01-00767-Yu.
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An optimal dividend and investment control problem
under debt constraints

Etienne Chevalier1 Vathana Ly Vath2 Simone Scotti3

1Université d’Evry val d’Essonne, Evry, France
2 ENSIIE, Evry, France

3 LPMA Université Paris 7 Denis Diderot, Paris, France

In this work, we consider the problem of determining the optimal control on
the dividend and investment policy of a firm. There are a number of research on
this corporate finance problem. In [1], Décamps and Villeneuve study the inter-
actions between dividend policy and irreversible investment decision in a growth
opportunity and under uncertainty. We may equally refer to [2] for an extension
of this study, where the authors relax the irreversible feature of the growth op-
portunity. In other words, they consider a firm with a technology in place that
has the opportunity to invest in a new technology that increases its profitability.
The firm self-finances the opportunity cost on its cash reserve. Once installed, the
manager can decide to return back to the old technology by receiving some cash
compensation.

As in a large part of the literature in corporate finance, the above papers assume
that the firm cash reserve follows a drifted Brownian motion. They also assume
that the firm does not have the ability to raise any debt for its investment as it holds
no debt in its balance sheet. In our study, as in the Merton model, we consider that
firm value follows a geometric Brownian process and more importantly we consider
that the firm carries a debt obligation in its balance sheet. However, as in most
studies, we still assume that the firm assets is highly liquid and may be assimilated
to cash equivalents or cash reserve. We allow the company to make investment and
finance it through debt issuance/raising, which would impact its capital structure
and risk profile. This debt financing results therefore in higher interest rate on the
firms outstanding debts. Furthermore, we consider that the manager of the firm
works in the interest of the shareholders, but only to a certain extent. Indeed, in the
objective function, we introduce a penalty cost P and assume that the manager does
not completely try to maximize the shareholders value since it applies a penalty
cost in the case of bankruptcy. This penalty cost could represent, for instance,
an estimated cost of the negative image upon his/her own reputation due to the
bankruptcy under his management leadership. Mathematically, we formulate this
problem as a combined singular and multiple-regime switching control problem.
Each regime corresponds to a level of debt obligation held by the firm.

Acknowledgements. This research benefitted from the support of the Chaire
Risque de Crédit, Fédération Bancaire Franćaise.
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Stochastic control and free boundary problem
for sailboat trajectory optimization

Laura Vinckenbosch

EPFL, Lausanne, Switzerland

I will present a stochastic control problem motivated by sailing races. The goal
is to minimize the travel time between two locations, by selecting the fastest route
in face of randomly changing weather conditions, such as wind direction. When a
sailboat is travelling upwind, the key is to decide when to tack, that is, to switch
bearings in such a way that if the wind was coming from one side of the yacht
before the tacking, then, after the tacking, it comes from the other side of the
yacht. Since this maneuver slows down the yacht, it is natural to model this time
lost by a tacking penalty, c > 0. This places the problem in the context of optimal
stochastic control problems with switching costs.

Our model preserves some of the real-world features of wind variability while
eliminating some of the geometric problems arising from the specifics of yacht
motion. We assume that the yacht’s speed v is a constant function of the angle γ
between the yacht’s bearing and the wind direction: v(γ) = v 1{|γ|≥π

4
}, γ ∈ [−π, π].

This is a big simplification which still preserves the main features of the initial
problem. Indeed, though the speed of the yacht certainly depends on γ, assuming
that sailing settings are chosen so as to maximize the yacht’s upwind velocity, the
yacht sails mostly at a nearly constant speed. Furthermore, in order to simplify the
problem, we consider that the wind speed is also constant and that only the wind
direction (Wt)t≥0 is random. We assume that (Wt) is a two-state continuous-time
Markov chain defined on a filtered space (Ω,F ,Ft,P), taking values in {±α} with
α ∈ ]0, π4 [ . A tacking strategy is defined as a right continuous, piecewise constant
and adapted process (At)t≥0 taking values in {±1}. If At = 1 (resp. −1), it means
that at time t, the yacht is sailing on starboard (resp. port) tack. Namely, the
wind enters the sails from its right (resp. left) side. The number of tackings of a
strategy A is given by the following process:

Nt(A) = ]{s ∈ [0, t] : As 6= As−}.

To ensure model consistency, a strategy is admissible only if it satisfies some extra
conditions which will be given during the presentation. If one starts at a point ~x
of the race area, on a tack a ∈ {±1} and under a wind w ∈ {±α}, then the payoff
function of a race driven by an admissible tacking strategy A is given by

J(~x, a, w,A) = E~x,a,w
(
τA + cNτA(A)

)
where τA is the hitting time of the target buoy. The value function of the problem
is then given by

V (~x, a, w) = inf
A admiss.

J(~x, a, w,A).
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First, we will discuss some properties of the solution and the concept of a lifted
tack, specific to route optimization. This allows us to characterize the wind into
two categories (stable or unstable) related to the mean time between changes in
wind direction. Several asymptotic cases have been studied in [2]. Here, I would
like to present a particular case where it is possible to find an explicit solution of
the problem. We assume that the yacht starts close to the target buoy under a
stable wind. In this case, we can show that the value function solves a system of
first order partial differential equations with free boundaries that are easy to find.
The system can be transformed into second order hyperbolic partial differential
equations of Klein-Gordon type. We compute explicitly the solutions of these
equations, which give formulas for the value function of the problem. A verification
theorem establishes then the optimality of the solution. I will conclude by giving
the general shape of the solution when we consider the problem in the entire state
space and the procedure to compute the value function in that case.

This work has been done in collaboration with R. Dalang and was highly mo-
tivated by the work of F. Dumas in [1].
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A general Bayesian disorder problem for a Brownian motion
on a finite interval

Mikhail Zhitlukhin1,2 Albert Shiryaev1

1Steklov Mathematical Institute, Moscow, Russia
2The University of Manchester, UK

1. Suppose we sequentially observe a process X = (Xt)t≥0 satisfying the equation

dXt = µI(t ≥ θ)dt+ dBt, X0 = 0,

where B = (Bt)t≥0 is a standard Brownian motion, θ is a non-negative unobserv-
able random variable taking values in an interval [0, T ] with a known distribution,
independent of B, and µ > 0 is a known number. The random variable θ can be in-
terpreted as the moment of disorder – the moment when the drift of X changes. We
consider the problem of detecting the disorder that consists in finding the stopping
time τ∗ of the filtration (FXt )t≥0 which is “as close as possible” to θ.

Let H(t) be a penalty function, which decreases for t < 0, increases for t > 0
and H(0) = 0. Mathematically, we look for the stopping time τ∗ such that

EH(τ∗ − θ) = inf
τ
EH(τ − θ), (1)

where the infimum is taken over all stopping times τ of (FXt )t≥0.
Some particular cases of problem (1) have been considered in the literature

mainly when θ is exponentially distributed and H(t) is of a special form (see the
review in [1]). In the present paper we provide a general solution to the problem
when θ takes values in a finite interval [0, T ].

2. We consider the case when H(t) is linear or exponential for t ≥ 0, i. e.

H(t) = ct for t ≥ 0 or H(t) =
c

b
ebt for t ≥ 0,

where b, c > 0 are known numbers. In the linear case, for convenience, we assume

b = 0. Introduce the generalized Shiryaev–Roberts statistic ψ = (ψ
(b)
t )t≥0:

ψ
(b)
t = eµXt−(µ2/2−b)t

∫ t

0
e−µXs+(µ2/2−b)sdG(s).

Let E∞ denote the mathematical expectation with respect to the measure, under
which X is a Brownian motion, and define function H̃(t) =

∫∞
t H(t− s)dG(s).

We show that under mild smoothness conditions on G, the optimal stopping
time τ∗ in problem (1) can be found as the first hitting time of ψ(b) to a time-
dependent level:

τ∗ = inf{t ≥ 0 : ψ
(b)
t ≥ a(t)} ∧ T,
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where the function a : [0, T ]→ R+ is the unique continuous solution of the equation∫ T

t
E∞
[
(cψ(b)

s + H̃ ′(s))I{ψ(b)
s < a(s)}

∣∣ψ(b)
t = a(t)

]
ds = 0, t ∈ [0, T ],

satisfying the conditions

a(t) ≥ −H̃ ′(t)/c for t < T, a(T ) = −H̃ ′(T−)/c.

The average penalty H = EH(τ∗ − θ) can be found by the formula

H = H̃(0)−
∫ T

0
E∞
[
(cψ(b)

s + H̃ ′(s))I{ψ(b)
s < a(s)}

]
ds.

3. The main idea consists in reducing problem (1) to the following optimal stopping
problem for the process ψ(b):

V = inf
τ≤T

E∞
[
H̃(τ) + c

∫ τ

0
ψ(b)
s ds

]
.

The solution of this problem is found using standard methods.
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Efficient hedging of options with robust convex loss functionals

Vyacheslav V. Bykov

Lomonosov Moscow State University, Moscow, Russia

1. We study the problem of partial hedging a European option in an incomplete
financial market, modeled through a semimartingale discounted price process
S = (St)t∈[0,T ] on a stochastic basis (Ω,F ,F = (Ft)t∈[0,T ],P), T <∞.

Let Pσ denote the set of probability measures P∗ equivalent to P such that S is
a sigma-martingale with respect to P∗. We assume that S satisfies the condition of
NFLVR (no free lunch with vanishing risk). As in [1], it is equivalent to Pσ 6= ∅.

We model the discounted payoff of a European option with an FT -measurable,
nonnegative random variable H and assume C0 := supP∗∈Pσ E

P∗
[H] <∞.

Then for a given initial capital 0 ≤ c ≤ C0 we have the following optimization
problem

u(c) = inf
ξ∈Adm

sup
Q∈Q

{
EQ[l(H − V ξ

T )+]− γ(Q)
}
, (1)

where Q is a convex family of absolutely continuous probability measures with
respect to P, l : R+ → R+ is a convex, nondecreasing loss function, γ : Q → R+ is
a convex function, Adm is a class of all admissible hedging strategies and
V ξ
t := c+

∫ t
0 ξsdSs is the corresponding value process, t ∈ [0, T ].

2. Efficient hedging was introduced and solved in a general semimartingale model
in continuous time in [4]. The authors used the expected loss function as a risk
measure.

The two-steps method of [4] can be analogously applied to our case and provides
that

u(c) = inf
V ∈A

sup
Q∈Q

{
EQ[l(H − V )]− γ(Q)

}
, (2)

where A :=
{
V ∈ FT | P(0 ≤ V ≤ H) = 1 and supP∗∈Pσ E

P∗
[V ] ≤ c

}
.

3. In the present paper we provide a dual characterization of the value function of
this optimal problem.

To be more concrete, the following dual-representation formula holds:

u(c) = − inf
y≥0

inf
η∈D,Q∈Q

{
EQ[ṼH(y

η

ZQ
)] + γ(Q) + cy

}
, (3)

where ZQ = dQ/dP, ṼH(w)(λ) = sup0≤x≤H(w)

{
−λx− l(H(w)− x)

}
and

D :=
{
η ∈ L+

1 | EPηV ≤ 1 for all V ∈ A
}

.

Moreover the infimum in (2) is attained.

4. The same result is obtained in [5], but the authors used additional assumptions
to prove it. In this paper it is shown that one can prove some facts by using
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the convex analysis methods and do not require additional assumptions such as
conditions on differentiability of the loss function in [5].

In particular, we widely use a new approach to the notion of the f-divergence
[2,3] which extends the domain of its definition to bounded finitely additive set
functions taking nonnegative values.

Acknowledgements. The author is grateful to Alexander A. Gushchin for his
support in solving the problem.
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Expected utility maximization in exponential Lévy models

Mikhail Y. Ivanov

Moscow State University, Moscow, Russia

1. In modern financial mathematics the problem of maximizing expected utility of
the asset portfolio has become increasingly popular.

In our work we consider a model of a financial market with one asset and a
finite maturity T . The capital process has the form X = x + H · S, where x is
the initial wealth, H is a predictable process (also called “strategy”) and S is a
semimartingale that models the asset’s price. We assume that all capital processes
belong to the set X (x) = {Xt ≥ 0 : X0 = x}. Our aim is to maximize the expected
logarithmic utility at time T :

u(x) = sup
X∈X (x)

E[ln(XT )].

Here we suppose that u(x) < +∞.

The problem of utility maximization was considered in [1] by Kramkov and
Schachermayer in a general model of incomplete markets and a general utility func-
tion finite on R+. The solution was found by solving the dual problem, where the
minimum was taken over the set of supermartingale deflators, not only equivalent
local martingale measures.

In our work we consider the case of exponential Lévy models when S is the
stochastic exponential of a Lévy process L, ∆L ≥ −1, with the triplet (b, c, ν). The
problem of maximizing logarithmic utility in exponential Lévy models was solved
by Hurd [2] under the assumption that the logarithms of price processes have jumps
unbounded from above and below. He used the dual method and indicated that
there are cases where the solution of the dual problem is a supermartingale and
not necessary a martingale.

It is well known that the solution X∗ is the numéraire portfolio and the solution
of the dual problem satisfies X∗Y ∗ = 1. Kardaras [3] showed that the numéraire
portfolio exists in an exponential Lévy model iff the process L is not monotonous.
Recall [4] that the Lévy process is monotonous iff c = 0, ν[x < 0] = 0, b −∫
x1|x|≤1ν(dx) ≥ 0 or c = 0, ν[x > 0] = 0, b−

∫
x1|x|≤1ν(dx) ≤ 0. We show that

if the monotonous assumption is not satisfied, the numéraire portfolio X∗ exists
and there are only three possibilities for Y ∗ = 1/X∗.

1. Y ∗ is a supermartingale, but not a martingale.
2. Y ∗ is a martingale, but not the density process of an equivalent σ-martingale

measure.
3. Y ∗ is the density process of an equivalent martingale measure.

The aim of our work is to classify all these cases in terms of the Lévy triplet.
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2. Consider the set C = {p : ν{x : (1 + px) < 0} = 0} and put M = inf(C), N =
sup(C). Denote by L1 and L2 the following quantities:

L1 = cN − b+

∫
|x|≤1

x2

|(1/N) + x|
ν(dx)−

∫
x>1

x

1 +Nx
ν(dx)

L2 = cM − b+

∫
|x|≤1

−x2

|(1/M) + x|
ν(dx)−

∫
x>1

x

1 +Mx
ν(dx)

Here we use the rules: 0 · ∞ = 0, 1/∞ = 0, 1/0 = ∞.

Theorem 1. In a finite-time exponential Lévy model, for Y ∗ = 1/X∗, where X∗

is the numéraire portfolio, the following holds true:

1. Y ∗ is the density process of an equivalent martingale measure in one of the
following 3 cases:

(i) b+

∫
x>1

xν(dx) > 0 or +∞ and

L1 ≥ 0 if N < +∞ or L1 > 0 if N = +∞.
(ii) b+

∫
x>1

xν(dx) = 0.

(iii) b+

∫
x>1

xν(dx) < 0 and

L2 ≤ 0 if M > −∞ or L2 < 0 if M = −∞.

2. Y ∗ is a martingale but not the density process of an equivalent martingale
measure, when the following is satisfied:

b+

∫
x>1

xν(dx) < 0 and M = 0.

3. Y ∗ is a supermartingale and not a martingale in one of the following 2 cases:

(i) b+

∫
x>1

xν(dx) > 0 or +∞,

L1 < 0 and N < +∞.

(ii) b+

∫
x>1

xν(dx) < 0,

L2 > 0 and −∞ < M < 0.
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On superhedging prices of contingent claims

Ruslan V. Khasanov

Moscow State University, Moscow, Russia

1. We consider a model of security market which consists of d+ 1 assets, one bond
and d stocks. We suppose that the price of the bond is constant and denote by
S = (Si)1≤i≤d the price process of the d stocks. The process S is assumed to be
a semimartingale on a given filtered probability space (Ω,F , (Ft)0≤t≤T ,P). We
assume that T > 0 is a finite time horizon and F0 is trivial, FT = F .

Consider an investor on our financial market. A (self-financing) portfolio Π of
the investor is a pair (x,H), where the constant x is the initial value of the portfolio
and H = (H i)1≤i≤d is a trading strategy of the investor, i.e. is a predictable S-
integrable process specifying the amount of each asset held in the portfolio. The
value process X = (Xt)0≤t≤T of such a portfolio Π is given by

Xt = X0 +

∫ t

0
HudSu, 0 ≤ t ≤ T. (1)

We denote by H the set of admissible trading strategies of the investor and by
X (x) the family of wealth processes with non-negative capital at any instant, i.e.
X is of the form (1), Xt ≥ 0 for all t ∈ [0, T ], and with initial value equal to x.

2. Given a contingent claim B with maturity T , we consider the following two
values:

VH (B) = inf{x ∈ R : ∃H ∈H : x+ (H · S)T ≥ B} (2)

and

V+(B) = inf{x ∈ R : ∃X ∈X (x) : XT ≥ B}. (3)

The values VH (B) and V+(B) are called the superhedging prices of the claim B
and are the smallest initial endowments that allow the investor to super-replicate
B at maturity. But in the first case, investor is allowed to use trading strategies
from the set H , and in the second case, the wealth process of the investor has to
be non-negative.

3. Superhedging was introduced and investigated first by El Karoui and Quenez
[1] in a continuous-time setting where the risky assets follow a multidimensional
diffusion process. Delbaen and Schachermayer [2, 3] generalized these results to,
respectively, a locally bounded and unbounded semimartingale model, under the
(NFLV R) condition. Theorem 1 extends the results of papers [2, 3]. In Theorem
2 we prove a new representation of the price V+(B) via the sets Z s and Z σ of
supermartingale and σ-martingale densities respectively (see [4]).
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4. Let us firstly introduce some basic objects we need to formulate our main results,
Theorems 1 and 2. Denote by A the following set: A = {(H · S)T , H ∈H }. Let
ψ = 1 + |B|. Then we construct the sets C ψ and R by the following rules:

C ψ = (A − L0
+) ∩ (ψL∞),

R =

{
µ ∈ ba+ : µ

(
1

ψ

)
= 1, µ(ξ) 6 0 ∀ξ ∈ C ψ

ψ

}
.

The elements of R are usually called separating measures in the literature, analo-
gous to the concept of martingale measure, but in a more general setting.

Theorem 1. Assume that the set H is a convex cone, VH (ψ) < ∞ and
B
ψ ∈ L

∞. Then

VH (B) = max
µ∈R

µ

(
B

ψ

)
. (4)

If B ∈ L∞ and H is a set H bb of bounded from below wealth processes, then,
under the (NFLV R) condition, formula (4) is reduced to the result of paper [2].
We can also reduce our formula to the one from paper [3], but under the additional
assumption VH ψ(ψ) < ∞, where H ψ is a set of ψ-admissible trading strategies,
introduced in [3]. In comparison with papers [2, 3], we use an abstract class of
trading strategies, also we do not need any assumptions on arbitrage on financial
market and the maximum in formula (4) is attained.

Theorem 2. Assume that B ∈ L0
+. Then, under the (NUPBR) condition

(see [4]),
V+(B) = sup

Z∈Z s
EBZT = sup

Z∈Z σ
EBZT . (5)

If H = H bb, then, in general, VH (B) ≤ V+(B). It is easy to prove that, under the
(NFLV R) condition, VH (B) = V+(B). We give an example which shows that,
under the weaker (NUPBR) condition, it is possible to have −∞ < VH (B) <
V+(B) < +∞.

Acknowledgements. The author is grateful to Alexander A. Gushchin for helpful
suggestions and comments.
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Sharp inequalities for maximum of skew Brownian motion

Yaroslav A. Lyulko

Lomonosov Moscow State University, Moscow, Russia

Let Wα = (Wα
t )t≥0 be a skew Brownian motion with parameter α ∈ [0, 1] which

can be defined as a unique strong solution X = (Xt)t≥0 of stochastic equation

Xt = X0 +Bt + (2α− 1)L0
t (X),

where L0
t (X) is the local time at zero of Xt. In the present work we obtain maximal

inequalities for skew Brownian motion. These inequalities generalize well-known
results concerning standard Brownian motion B = (Bt)t≥0 (case α = 1/2) and its
modulus |B| = (|Bt|)t≥0 (case α = 1). Namely, the authors of [1], [2] established
that for any Markov time τ ∈M

E( max
0≤t≤τ

Bt) ≤
√
Eτ , E( max

0≤t≤τ
|Bt|) ≤

√
2Eτ ,

where M is the set of all Markov times τ (with respect to the natural filtration of
B) with Eτ <∞. The main result of our work is contained in the following theorem
(see [3]).

Theorem 1. For any Markov time τ ∈M and for any α ∈ (0, 1) we have

E

(
max

0≤t≤τ
Wα
t

)
≤Mα

√
Eτ , (1)

where Mα = α(1 +Aα)/(1− α) and Aα is the unique solution of the equation

Aαe
Aα+1 =

1− 2α

α2
,

such that Aα > −1. Inequality (1) is “sharp,” i.e. for each T ≥ 0 there exists a
stopping time τ such that Eτ = T and

E

(
max

0≤t≤τ
Wα
t

)
= Mα

√
Eτ .
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Fig. 1. The quantity Mα
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The stochastic optimization of the automated forecast
of the severe squalls and tornadoes on the base

of hydrodynamic-statistical forecast models

Elvira Perekhodtseva

Moscow technical university MIREA, Russia

Development of successful method of automated statistical well-in-advance fore-
cast (from 12 hours to two days) of dangerous phenomena – severe squalls and
tornadoes – could allow to mitigate the losses. The prediction of these phenomena
is a very difficult problem for the synoptic till recently. The synoptic forecast of
these phenomena is usual the subjective decision of an operator. Nowadays there
is no successful hydrodynamic model for the forecast of such phenomena with the
wind velocity more 20 m/s and more 24 m/s, hence the main tools for the ob-
jective forecast development are the methods using the statistical model of these
phenomena recognition.

The meteorological situation involved the dangerous phenomena – the squalls
and tornadoes with the wind velocity V ≥ 20 m/s is submitted as the vector
X(A) = (x1(), x2(), . . . , xn()), where n – the quantity of the empiric potential
atmospheric parameters (predictors). The values of these predictors for the dates
and towns, where are these phenomena, were accumulated in the set {X(A)} –
the learned sample of the phenomena A presence. The learned sample of the
phenomena A absence or the phenomena B presence ({X(B)}) was obtained for
such towns, where the atmosphere was instability and the thunderstorms and the
rainfalls were observed, but the wind velocity is not so high (V < 8-10 m/s). The
recognition model of the sets {X(A)} and {X(B)} was constructed with the help of
Byes approach [1, 3]. This approach allow to minimize the middle economic losses
of forecast errors (of the I and II kinds).

It was necessary to decide the problem of the compressing the predictors space
without the information losses in order to choose the informative vector-predictor
and to calculate the decisive rules of the recognition of the sets {X(A)} and {X(B)}.
It was made with the help of diagonalization of a sample matrix Ralgorithm [3].
The most informative predictors – representatives from each of diagonal blocks
and two independent predictors are composed vector-predictor of dimension k = 6
(from n = 26 potential predictors) [3]. The most informative were estimated using
the criterion by Mahalanobis distance ∆2 (∆2 = (mi(A) − mi(B)) ↑ 2/σ2) and
criterion of the entropy minimum Hmin by Vapnik-Chervonenkis [2, 3].

As a result, the informative vector-predictor of the most informative and slightly
dependent predictors from six atmospheric parameters after this selection (V700,
Tea, Tdea, H0, (T−T′)500, dT/dnea) [3]. Here V700 – the value of the mean
velocity of the wind on the level 700 hPa, Tea – the maximal value of the tempera-
ture near the earth level, Tdea – the maximal value of the dew point near the earth
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level, H0 – the level of the isotherm of 0oC, (T′ −T)500 – the difference between
the values of the stratification curve and the moist adiabatic on the level 500 hPa,
dT/dnea – the maximal difference between temperatures over the front on the
earth level near the forecast point. Then the linear discriminant function U(X),
depended from these parameters, was calculated by Byes approach. If the value of
U(X) > 0 at the fix station, we have the forecast squall (V > 20 m/s) near this sta-
tion during the current day. The tornadoes objective forecast examples (in Ivanovo,
in Penza, in Dubna) were calculated by this statistical model with the using the dis-
criminant function U(X) (the value U(X) was more than 3) [5]. The new statistical
model and new discriminant functions F1(X) (for the wind velocity V > 20 m/s)
and F2(X) (for the wind velocity V¿24 m/s) were develop on the base of the output
data of the first hydrodynamic hemispheric model. The probability of dangerous
winds for each of two classes P1(X) and P2(X) (P1(X) = 100/(1 + exp(F1(X));
P2(X) = 100/(1+exp(−F2(X))) were calculated operative in the nodes of the greed
150x150km two times per day. The probability more than the empiric threshold
P give us the forecast area of such squalls. We obtained by same way [3] the new
informative vector-predictors for each classes (k = 8 from n = 38 new parameters).
This forecast of dangerous squalls and tornadoes over European part of Russia was
recommended in 1993 years for the using in synoptic practice [4, 5]. This method
was also adapted for the territory of Siberia. The examples of last hydrodynamic-
statistical forecast model of squalls and tornadoes using the new regional hydro-
dynamic model output data in the nodes of mesh 75x75 km are submitted at [5].
Three submitted stochastic models of automated forecast of dangerous squalls and
tornadoes over the territory of Russia are used for the development of the stochas-
tic optimization of forecasts with the minimum economical losses of forecast errors.
The optimal stochastic decisive rule was composed by the empiric approach us-
ing three hydrodynamic-statistical models of the automated forecasts of squall and
tornadoes to current and next days.
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1. Financial crises have strong impacts on the economy, including labor markets,
household incomes, and the profitability of companies (see, e.g., [1]-[3]). It is there-
fore important to understand how financial crises develop and whether it is possible
to detect early warning signals on financial crises.

Financial crises lie in the area of extreme events. Compared to fluctuations
in values of the indicators of a system’s performance, extreme events are usually
understood as qualitative shifts in the system’s behavior. In this context, signals
on the upcoming extreme events can be characterized in terms of tendencies rather
than predictions on particular quantities. Roughly, one can group the tendencies
in two categories – tendencies to a crisis and tendencies to avoiding a crises. Under
that paradigm, early warning signals can be treated in a binary way – as either
“minus” signals registering a tendency to a crisis, or “plus” signals registering a
tendency to avoiding a crisis (see [4]).

Based on this binary approach, we develop a three-stage research pattern for
identifying tendencies to crises in application to two recent financial crises – the
Dot-com crisis of 2001-2002, and the latest global financial crisis of 2008-2009.

2. A first stage is recognition. Assessing an eight-year-long financial time series (the
Dow Jones Industrial Average and the Federal Reserve Interest Rate) preceding
the Dot-com crisis of 2001-2002, we identify some “minus” and “plus” signals. We
understand the “minus” signals as short (four-month-long) patterns in the time
series, which occur, primarily, close to the time of the crisis, and the “plus” signals
as those occurring, primarily, in earlier periods. We propose a binary encoding rule
that transforms short data patterns into “minus” and “plus” signals.

A second stage is a statistical analysis. We use the binary encoding rule to
transform a long (1954-2001) time series preceding the crisis of 2001-2002 into a
sequence of “minus” and “plus” signals, and analyze the frequencies of a “minus”
and a “plus” to follow each short binary window in the sequence (in our analysis
each binary window is formed by three subsequent overlapping signals covering six
months). We treat the frequencies as transition probabilities, which define a binary
random process operating in the space of the binary windows. In our analysis
the binary random process serves as a model describing the mechanism for the
“plus” and “minus” signals to occur in the operation of the financial system under
consideration. Two important features of the model are the following. Firstly, as
ensured by the recognition analysis, the model recognizes early warning signals on
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the crisis of 2001-2002. Secondly, as ensured by the statistical analysis, the model
captures the dynamics of signals occurring in a long historical time series.

A third stage is testing the forecasting ability of the model. We use the model to
assess, retrospectively, the probability of a financial crisis to occur in October 2008
(the latest global financial crisis was registered in the period from October 2008
to mid-2009). We show that the probability grows steadily starting from October
2007 and reaches value 1 in August 2008.

We also find the probability of a crisis to occur in each month in the period
November 2008 - August 2009. The behavior of the probability is similar to that
found for October 2008, i.e., it starts to grow fast and reaches size 1 several months
before the month, for which we calculate the probability. It is shown that the
probability of a crisis to occur starting from September 2009 (in the period when
the real economy showed signs of recovery) grows slightly but never reaches 1.

Thus, our binary stochastic model based on analysis of data preceding the crisis
of 2001-2002, demonstrates an ability to register early warning signals on the global
financial crisis of 2008-2009.
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