A general Bayesian disorder problem for a Brownian motion on a finite interval

Mikhail Zhitlukhin^{1,2} Albert Shiryaev¹

¹Steklov Mathematical Institute, Moscow, Russia ²The University of Manchester, UK

1. Suppose we sequentially observe a process $X = (X_t)_{t>0}$ satisfying the equation

$$dX_t = \mu \mathbf{I}(t \ge \theta) dt + dB_t, \qquad X_0 = 0,$$

where $B = (B_t)_{t\geq 0}$ is a standard Brownian motion, θ is a non-negative unobservable random variable taking values in an interval [0, T] with a known distribution, independent of B, and $\mu > 0$ is a known number. The random variable θ can be interpreted as the moment of disorder – the moment when the drift of X changes. We consider the problem of detecting the disorder that consists in finding the stopping time τ^* of the filtration $(\mathcal{F}_t^X)_{t\geq 0}$ which is "as close as possible" to θ .

Let H(t) be a penalty function, which decreases for t < 0, increases for t > 0and H(0) = 0. Mathematically, we look for the stopping time τ^* such that

$$\mathsf{E}H(\tau^* - \theta) = \inf_{\tau} \mathsf{E}H(\tau - \theta), \tag{1}$$

where the infimum is taken over all stopping times τ of $(\mathcal{F}_t^X)_{t\geq 0}$.

Some particular cases of problem (1) have been considered in the literature mainly when θ is exponentially distributed and H(t) is of a special form (see the review in [1]). In the present paper we provide a general solution to the problem when θ takes values in a finite interval [0, T].

2. We consider the case when H(t) is linear or exponential for $t \ge 0$, i.e.

$$H(t) = ct$$
 for $t \ge 0$ or $H(t) = \frac{c}{b}e^{bt}$ for $t \ge 0$,

where b, c > 0 are known numbers. In the linear case, for convenience, we assume b = 0. Introduce the generalized Shiryaev-Roberts statistic $\psi = (\psi_t^{(b)})_{t \ge 0}$:

$$\psi_t^{(b)} = e^{\mu X_t - (\mu^2/2 - b)t} \int_0^t e^{-\mu X_s + (\mu^2/2 - b)s} dG(s).$$

Let E^{∞} denote the mathematical expectation with respect to the measure, under which X is a Brownian motion, and define function $\tilde{H}(t) = \int_{t}^{\infty} H(t-s) dG(s)$.

We show that under mild smoothness conditions on G, the optimal stopping time τ^* in problem (1) can be found as the first hitting time of $\psi^{(b)}$ to a time-dependent level:

$$\tau^* = \inf\{t \ge 0 : \psi_t^{(b)} \ge a(t)\} \land T,$$

Speaker: Mikhail Zhitlukhin, e-mail: mikhailzh@mi.ras.ru

where the function $a: [0,T] \to \mathbb{R}_+$ is the unique continuous solution of the equation

$$\int_{t}^{T} \mathsf{E}^{\infty} \big[(c\psi_{s}^{(b)} + \tilde{H}'(s)) \mathbf{I} \{ \psi_{s}^{(b)} < a(s) \} \, \big| \, \psi_{t}^{(b)} = a(t) \big] ds = 0, \quad t \in [0,T],$$

satisfying the conditions

$$a(t) \ge -\tilde{H}'(t)/c$$
 for $t < T$, $a(T) = -\tilde{H}'(T-)/c$.

The average penalty $\mathcal{H} = \mathsf{E}H(\tau^* - \theta)$ can be found by the formula

$$\mathcal{H} = \tilde{H}(0) - \int_0^T \mathsf{E}^{\infty} \big[(c\psi_s^{(b)} + \tilde{H}'(s)) \mathbf{I} \{ \psi_s^{(b)} < a(s) \} \big] ds.$$

3. The main idea consists in reducing problem (1) to the following optimal stopping problem for the process $\psi^{(b)}$:

$$V = \inf_{\tau \le T} \mathsf{E}^{\infty} \left[\tilde{H}(\tau) + c \int_0^{\tau} \psi_s^{(b)} ds \right].$$

The solution of this problem is found using standard methods.

References

- Shiryaev A. N. (2010). Quickest Detection Problems: Fifty Years Later. Sequential Analysis 29, 345–385.
- [2] Zhitlukhin M. V., Shiryaev A. N. (2012). Bayesian disorder problems on filtered probability spaces. Submitted to *Theory of Probability and its Applications*.